Выбор оптимальной стратегии замены оборудования как задача динамического программирования. Задача о замене оборудования. Важной экономической проблемой является своевременное обновление оборудования: автомобилей, станков

Динамическое программирование. Задача о замене оборудования

Найти оптимальные сроки замены оборудования. Первоначальная стоимость оборудования q 0 =6000 усл. ед., ликвидационная стоимость L(t)=q 0 2 -i , стоимость содержания оборудования возраста i лет в течение 1 года S(t)=0,1q 0 (t+1), срок эксплуатации оборудования 5 лет. В конце срока эксплуатации оборудование продается. Задачу решить графически.

Для построения графика в ПП Wolfram Mathematica 6.0 вводим

g = Plot[{6000*2^-x, 600*(x + 1)}, {x, 0, 5}]

В итоге получаем график:

Из графика видим, что оптимальный срок замены оборудования является второй год его эксплуатации.

Динамическое программирование. Оптимальное распределение средств между предприятиями

Найти оптимальное распределение средств в размере 9 усл. ед. между четырьмя предприятиями. Прибыль от каждого предприятия является функцией от вложенных в него средств и представлена таблицей:

Вложенные средства

I предприятие

II предприятие

III предприятие

IV предприятие

Вложения в каждое предприятия кратны 1 усл. ед.

Разобьем процесс выделения средств предприятиям на 4 этапа: на первом этапе выделяется y 1 средств предприятию П 1 , на втором -y 2 средств предприятию П 2 , на третьем - y 3 средств предприятию П 3 , на четвертом третьем - y 4 средств предприятию П 4

x n = x n - 1 - y n , n = 1,2,3, 4.

Заметим, что на четвертом этапе выделения средств весь остаток x 3 вкладывается в предприятие П 4 , поэтому y 3 = x 4 .

Воспользуемся уравнениями Беллмана для N = 4.

В результате получим следующие таблицы:

Таблица 1


Таблица 2

Таблица 3

Таблица 4

Из Таблицы 4 вытекает, что оптимальным управлением будет y 1 * =3, при этом оптимальная прибыль равна 42. Далее получаем

х 1 =х 0 -у 1 *=9-3=6, 2 (х 1)= 2 (6)=30, y 2 * =1

х 2 =х 1 -у 2 *=6-1=5, 3 (х 2)= 3 (5)=23, y 3 * =1

х 3 =х 2 -у 3 *=5-1=4, 4 (х 3)= 4 (4)=15, y 3 * =4

Таким образом, наиболее оптимальным является вложение в предприятия П1, П2, П3 и П4 денежных средств в размере 4, 1,1 и 3 усл.ед., соответственно. В этом случае прибыль будет максимальной и составит 42 усл. ед.

Данный сервис предназначен для онлайн решения задачи оптимальной стратегии обновления оборудования . Обычно в исходных данных задаются следующие параметры:

  • r(t) - стоимость продукции, произведенной в течение каждого года планового периода с помощью этого оборудования;
  • u(t) - ежегодные затраты, связанные с эксплуатацией оборудования;
  • s(t) - остаточная стоимость оборудования;
  • р - стоимость нового оборудования, включающая расходы, связанные с установкой, наладкой, запуском оборудования и не меняющаяся в данном плановом периоде.
Если стоимость оборудования не указана, будет решаться задача с функциями затрат и замены (задача планирования капитальных вложений).

Планирование капитальных вложений.

Пример №1 . Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход r(t) и остаточная стоимость S(t) в зависимости от возраста заданы в таблице, стоимость нового оборудования равна P = 13 , а возраст оборудования к началу эксплуатационного периода составлял 1 год.
t 0 1 2 3 4 5 6
r(t) 8 7 7 6 6 5 5
s(t) 12 10 8 8 7 6 4
Решение .
I этап. Условная оптимизация (k = 6,5,4,3,2,1).
Переменной управления на k-м шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (С) или заменить (З) оборудование в начале k-го года.
1-й шаг: k = 6. Для 1-го шага возможные состояния системы t = 1,2,3,4,5,6, а функциональные уравнения имеют вид:
F 6 (t) = max(r(t), (C); S(t) - P + r(0), (З))
F 6 (1) = max(7 ; 10 - 13 + 8) = 7 (C)
F 6 (2) = max(7 ; 8 - 13 + 8) = 7 (C)
F 6 (3) = max(6 ; 8 - 13 + 8) = 6 (C)
F 6 (4) = max(6 ; 7 - 13 + 8) = 6 (C)
F 6 (5) = max(5 ; 6 - 13 + 8) = 5 (C)
F 6 (6) = max(5 ; 4 - 13 + 8) = 5 (C)
2-й шаг: k = 5. Для 2-го шага возможные состояния системы t = 1,2,3,4,5, а функциональные уравнения имеют вид:
F 5 (t) = max(r(t) + F 6 (t+1) ; S(t) - P + r(0) + F 6 (1))
F 5 (1) = max(7 + 7 ; 10 - 13 + 8 + 7) = 14 (C)
F 5 (2) = max(7 + 6 ; 8 - 13 + 8 + 7) = 13 (C)
F 5 (3) = max(6 + 6 ; 8 - 13 + 8 + 7) = 12 (C)
F 5 (4) = max(6 + 5 ; 7 - 13 + 8 + 7) = 11 (C)
F 5 (5) = max(5 + 5 ; 6 - 13 + 8 + 7) = 10 (C)
F 5 (6) = max(5 + ; 4 - 13 + 8 + 7) = 6 (З)
3-й шаг: k = 4. Для 3-го шага возможные состояния системы t = 1,2,3,4, а функциональные уравнения имеют вид:
F 4 (t) = max(r(t) + F 5 (t+1) ; S(t) - P + r(0) + F 5 (1))
F 4 (1) = max(7 + 13 ; 10 - 13 + 8 + 14) = 20 (C)
F 4 (2) = max(7 + 12 ; 8 - 13 + 8 + 14) = 19 (C)
F 4 (3) = max(6 + 11 ; 8 - 13 + 8 + 14) = 17 (C/З)
F 4 (4) = max(6 + 10 ; 7 - 13 + 8 + 14) = 16 (C/З)
F 4 (5) = max(5 + 6 ; 6 - 13 + 8 + 14) = 15 (З)
F 4 (6) = max(5 + ; 4 - 13 + 8 + 14) = 13 (З)
4-й шаг: k = 3. Для 4-го шага возможные состояния системы t = 1,2,3, а функциональные уравнения имеют вид:
F 3 (t) = max(r(t) + F 4 (t+1) ; S(t) - P + r(0) + F 4 (1))
F 3 (1) = max(7 + 19 ; 10 - 13 + 8 + 20) = 26 (C)
F 3 (2) = max(7 + 17 ; 8 - 13 + 8 + 20) = 24 (C)
F 3 (3) = max(6 + 16 ; 8 - 13 + 8 + 20) = 23 (З)
F 3 (4) = max(6 + 15 ; 7 - 13 + 8 + 20) = 22 (З)
F 3 (5) = max(5 + 13 ; 6 - 13 + 8 + 20) = 21 (З)
F 3 (6) = max(5 + ; 4 - 13 + 8 + 20) = 19 (З)
5-й шаг: k = 2. Для 5-го шага возможные состояния системы t = 1,2, а функциональные уравнения имеют вид:
F 2 (t) = max(r(t) + F 3 (t+1) ; S(t) - P + r(0) + F 3 (1))
F 2 (1) = max(7 + 24 ; 10 - 13 + 8 + 26) = 31 (C/З)
F 2 (2) = max(7 + 23 ; 8 - 13 + 8 + 26) = 30 (C)
F 2 (3) = max(6 + 22 ; 8 - 13 + 8 + 26) = 29 (З)
F 2 (4) = max(6 + 21 ; 7 - 13 + 8 + 26) = 28 (З)
F 2 (5) = max(5 + 19 ; 6 - 13 + 8 + 26) = 27 (З)
F 2 (6) = max(5 + ; 4 - 13 + 8 + 26) = 25 (З)
6-й шаг: k = 1. Для 6-го шага возможные состояния системы t = 1, а функциональные уравнения имеют вид:
F 1 (t) = max(r(t) + F 2 (t+1) ; S(t) - P + r(0) + F 2 (1))
F 1 (1) = max(7 + 30 ; 10 - 13 + 8 + 31) = 37 (C)
F 1 (2) = max(7 + 29 ; 8 - 13 + 8 + 31) = 36 (C)
F 1 (3) = max(6 + 28 ; 8 - 13 + 8 + 31) = 34 (C/З)
F 1 (4) = max(6 + 27 ; 7 - 13 + 8 + 31) = 33 (C/З)
F 1 (5) = max(5 + 25 ; 6 - 13 + 8 + 31) = 32 (З)
F 1 (6) = max(5 + ; 4 - 13 + 8 + 31) = 30 (З)
Результаты вычислений по уравнениям Беллмана F k (t) приведены в таблице, в которой k - год эксплуатации, а t - возраст оборудования.
Таблица – Матрица максимальных прибылей
k / t 1 2 3 4 5 6
1 37 36 34 33 32 30
2 31 30 29 28 27 25
3 26 24 23 22 21 19
4 20 19 17 16 15 13
5 14 13 12 11 10 6
6 7 7 6 6 5 5

В таблице выделено значение функции, соответствующее состоянию (З) - замена оборудования.
При решении данной задачи в некоторых таблицах при оценке выбора нужного управления мы получали одинаковые значения F для обоих вариантов управления. В этом случае, в соответствии с алгоритмом решения подобных задач необходимо выбирать управление сохранения оборудования.
II этап. Безусловная оптимизация (k = 6,5,4,3,2,1).
По условию задачи возраст оборудования равен t 1 =1 годам. Плановый период N=6 лет.
К началу 1-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 1 = t 0 + 1 = 0 + 1 = 1. Прибыль составит F 1 (1)=37.
Оптимальное управление при k = 1, x 1 (1) = (C), т.е. максимум дохода за годы с 1-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 2-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 2 = t 1 + 1 = 1 + 1 = 2. Прибыль составит F 2 (2)=30.
Оптимальное управление при k = 2, x 2 (2) = (C), т.е. максимум дохода за годы с 2-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 3-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 3 = t 2 + 1 = 2 + 1 = 3. Прибыль составит F 3 (3)=23.
Безусловное оптимальное управление при k = 3, x 3 (3)=(З), т.е. для получения максимума прибыли за оставшиеся годы необходимо в этом году провести замену оборудования.
К началу 4-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 4 = t 3 + 1 = 0 + 1 = 1. Прибыль составит F 4 (1)=20.
Оптимальное управление при k = 4, x 4 (1) = (C), т.е. максимум дохода за годы с 1-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 5-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 5 = t 4 + 1 = 1 + 1 = 2. Прибыль составит F 5 (2)=13.
Оптимальное управление при k = 5, x 5 (2) = (C), т.е. максимум дохода за годы с 2-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 6-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 6 = t 5 + 1 = 2 + 1 = 3. Прибыль составит F 6 (3)=6.
Оптимальное управление при k = 6, x 6 (3) = (C), т.е. максимум дохода за годы с 3-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
F 1 (1) → (C) → F 2 (2) → (C) → F 3 (3) → (З) → F 4 (1) → (C) → F 5 (2) → (C) → F 6 (3) → (C) →
Таким образом, за 6 лет эксплуатации оборудования замену надо произвести в начале 3-го года эксплуатации

Пример №2 . Задача планирования капитальных вложений. Интервал планирования Т=5 лет. Функция затрат на ремонт и дальнейшую эксплуатацию K(t)=t+2t 2 (р.); функция замены P(t)=10+0.05t 2 (р.). Определить оптимальную стратегию замены и ремонта для нового оборудования (t=0) и оборудования возраста t=1, t=2, t=3.
Определить оптимальные планируемые затраты по годам пятилетки, если количество оборудования по возрастным группам следующие: n(t=0)=10, n(t=1)=12, n(t=2)=8, n(t=3)=5

Задача замены оборудования состоит в определении оптимальных сроков замены старого оборудования (станков, производственных зданий и т.п.) в процессе его эксплуатации. С течением времени растут производственные затраты на текущий и капитальный ремонт и обслуживание, снижаются производительность труда, ликвидная стоимость.

Поэтому в определенный момент времени возникает необходимость (экономическая целесообразность) замены старого оборудования на новое. Критерием оптимальности являются, как правило, либо прибыль от эксплуатации оборудования (задача максимизации), либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Таким образом, задача состоит в нахождении плана-графика замены старого оборудования на новое в течение планируемого периода эксплуатации.

Основная характеристика оборудования – параметр состояния – его возраст .

При составлении динамической модели замены процесс замены рассматривают как – шаговый, разбивая весь период эксплуатации на n шагов. Возможное управление на каждом шаге характеризуется качественными признаками, например,
(сохранить оборудование),
(заменить оборудование).

При решении задачи замены оборудования используются следующие исходные данные:

–период планирования;

–ликвидная стоимость оборудования (
);

–стоимость содержания оборудования (
);

–первоначальная стоимость оборудования ().

Уравнения состояний системы зависят от управления:

В самом деле, если к -ому шагу
, то при сохранении оборудования
через год возраст оборудования увеличится на 1. Если оборудование заменяется новым
, то это означает, что к началу-ого шага её возраст=0, а после года эксплуатации=1, т.е.
.

Показатель эффективности -ого шага:

.

Пусть
– условные оптимальные затраты на эксплуатацию оборудования, начиная с-ого шага до конца, при условии, что к началу-ого шага оборудование имеет возрастлет.

Тогда уравнения Беллмана будут иметь вид:

Геометрическое решение задачи замены оборудования. Схема расчетов при решении задачи замены оборудования может быть представлена в виде двухкоординатной диаграммы (графа). На оси абсцисс будем откладывать номер шага , на оси ординат – возраст оборудования. Точка
на плоскости соответствует началу-го года эксплуатации оборудования возрасталет. Перемещение на графике в зависимости от принятого управления на-м шаге показано на рисунке.

Над каждым отрезком, соединяющим точки
и
, записываются соответствующие управлению
затраты на сохранение оборудования, а над отрезком, соединяющим точки
и
, запишем затраты, соответствующие замене оборудования – управлению
. Таким образом, будут размечены все отрезки, соединяющие точки на графике, соответствующие переходам из любого состояния
в состояние.

Решение типового примера

Задание 4

На производственном предприятии «ТИТАН» оборудование эксплуатируется в течение
лет, после чего продается (считается, что послелет оборудование в результате морального износа не способно обеспечить выпуск конкурентоспособной продукции). В начале каждого года руководство предприятия принимает решение сохранить оборудование или заменить его новым аналогичным (при этом старое оборудование продается, а вырученные средства направляются на покрытие части стоимости нового оборудования). Первоначальная стоимость нового оборудования составляет
тыс. руб., затраты на содержание оборудования –
тыс. руб., и ликвидная стоимость оборудования –
тыс. руб. приведены в табл. 11.

Таблица 11

Исходные данные задачи замены оборудования

Необходимо:

1. Определить минимальные суммарные затраты производственного предприятия «ТИТАН» на эксплуатацию оборудования в течение рассматриваемого периода .

2. Определить оптимальную стратегию (план-график) эксплуатации оборудования, обеспечивающую минимальные суммарные затраты производственного предприятия «ТИТАН» на эксплуатацию в течение рассматриваемого периода в условиях текущих цен.

3. Дать экономическую интерпретацию полученного решения.

1. Определим минимальные суммарные затраты производственного предприятия «ТИТАН» на эксплуатацию оборудования в течение 5 лет. Проведем на размеченном графе (рис. 28) условную оптимизацию.

5 шаг. В состояниях (5, ) оборудование продается, условный оптимальный доход от продажи равен ликвидной стоимости
, но поскольку целевая функция связана с затратами, то в кружках точек (5,) ставим величину дохода со знаком «–».

Состояние (4,1).

Таким образом, если система к последнему шагу находилась в точке (4,1), то следует идти в точку (5,2) (укажем это направление пунктирной линией).

Состояние (4,2).

оптимальный динамическое программирование стратегия

В общем виде проблема ставится следующим образом: определить оптимальную стратегию использования оборудования в период времени длительностью m лет, причем прибыль за каждые I лет, i= от использования оборудования возраста t лет должна быть максимальной.

Известны: r(t) - выручка от реализации продукции, произведенной за год на оборудовании возраста t лет, l(t) - годовые затраты, зависящие от возраста оборудования t, c(t) - остаточная стоимость оборудования возраста t лет, P - стоимость нового оборудования. Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, выраженный в годах.

Для построения математической модели последовательно выполняются этапы, сформулированные ниже.

1. Определение числа шагов. Число шагов равно числу лет, в течение которых эксплуатируется оборудование.

2. Определение состояний системы. Состояние системы характеризуется возрастом оборудования t; t=.

3. Определение управлений. В начале i-го шага, i= может быть выбрано одно из двух управлений: заменять или не заменять оборудование. Каждому варианту управления приписывается число

uс - если оборудование не заменяется;

uз - если оборудование заменяется.

4. Определение функции выигрыша на i-м шаге. Функция выигрыша на на i-м шаге - это прибыль от использования оборудования к концу на i-го года эксплуатации, t=, i=.

u1= uс - если оборудование в начале i-го года не заменяется;

u2= uз - если оборудование заменяется.

Таким образом, если оборудование не продается, то прибыль от его использования - это разность между стоимостью произведенной продукции и эксплуатационными издержками. При замене оборудования прибыль составляет разность между остаточной стоимость оборудования и стоимостью нового оборудования, к которой прибавляе6тся разность между стоимостью продукции и эксплуатационными издержками для нового оборудования, возраст которого в начале i-го шага составляет 0 лет.

5. Определение функции изменения состояния

u1 uс - если Xi=0

u2= uз - если Xi=1

6. Составление функционального уравнения для i=m.

7. Составление основного функционального уравнения

Где Wi(t) - прибыль от использования оборудования возраста t лет с i-го шага (с конца i-го года) до конца периода эксплуатации.

Wi+1(t+1) - прибыль от использования оборудования возраста t+1год с (i+1)-го шага до конца периода эксплуатации;

Таким образом, математическая модель задачи построена.

Алгоритм решения задачи

Введём обозначения:

t- возраст оборудования.

L(t) - производство продукции на оборудовании, возраст которого t лет.

R(t) - расходы на содержание оборудования.

P(t) - остаточная стоимость оборудования.

Р - стоимость нового оборудования

Fn(t)- прибыль от старого оборудования возраст которого t лет.

n-последний год.

на старом оборудовании (1)

Это функциональное уравнение

Форма входного документа

Данные могут быть занесены с помощью таблицы:

Таблица №1 . Данные входной информация.

По формуле

Описание программно-технических средств

Разработка программы производилась на языке программирования Borland

Delphi 7.0 при помощи операционной системы Microsoft Windows XP Professional

При разработке программы, использовались компоненты Delphi:

String Grid - для заполнения справочников и отображения результатов

Edit - для ввода значений

Button - для создания кнопки

Label - создание меток, для удобства использования

Image - изображения

MainMenu - Меню программы

OpenDialog - открыть диалог

При разработки программного обеспечения так же использовались следующие системные утилиты:

Антивирусные программа (Dr.Web 4.44)

Программы архиваторы (WinRar v3.45).

утилиты Microsoft Office (Microsoft Word, Excel).

графические редакторы (PhotoShop v CS3)

При разработке программного обеспечения использовался ПК со следующими характеристиками:

Процессор: Intel Pentium(R) 3.00 GHz

Оперативная память: 1Gb DDR2 PC 533

Видео карта: NVIDIA Gee Force FX 6600 128Mb

Жесткий диск: 200 Gb

Монитор: 17" 1280x1025@75Hz

Отладочный пример

найдём максимальную прибыль при замене оборудования через 2 года:

По формуле

Вывод: Максимальную прибыль в размере 215 единиц мы получим, если поменяем оборудование через 2 года на третий.

Описание программы

Программа «Решение задач о замене оборудования» предназначена для предприятий, занимающихся каким-либо родом деятельности, требующего использования определенного оборудования. В силу ряда причин, оборудование изнашивается физически, т.е. ломается и не подлежит ремонту или возникают такие неисправности, при которых проще купить новое оборудование, чем ремонтировать старое, либо изнашивается морально, т.е. темпы роста экономического развития отрасли производства этого оборудования очень велики. Таким образом, для того, чтобы «производство продукции» на таком оборудовании достигало максимального эффекта, его необходимо периодически менять. Эта программа подсчитывает количество лет, через которое нужно сменить оборудование, чтобы получить максимальную прибыль.

Для разработки программы «Решение задач о замене оборудования» был использован язык программирования Delphi 6. В настоящее время эта среда объектно-ориентированного программирования очень популярна, ее основой является язык Object Pascal. Она позволяет создавать приложения различной степени сложности - от простейших программ до профессиональных, предназначенных для работы с базами данных. Кроме того, помощь по программе оформлена в виде HTML-страниц с помощью программы Arachnophilia.

Вся работа с программой основана на работе с меню, с его описанием можно ознакомиться в пункте меню Помощь/Содержание/Работа с меню.

Данная программа создана при выполнении курсового проекта по предмету «Математические методы», на данную тему.

Введение………………...………………………………………………...……….3

Глава 1. Теоретическое описание модели замены оборудования…………..….4

1.1. Характеристика состояния хозяйствующего субъекта и выявление тенденций его развития…………...………………………………..……...4

1.2. Информационно-методическое обеспечение экономического моделирования……………...……...…………………………………...…..4

1.2.1. Методическая база решения модели………………….…………....4

1.2.2. Информационно-методическое обеспечение метода…………..…9

Глава 2. Расчет показателей экономико-математической модели и экономическая интерпретация результатов………………………….………...13

2.1. Нахождение условного оптимального решение задачи…………...15

2.2. Составление оптимального плана замены оборудования…………21

Заключение…………………………………………………………………….....24

Список литературы…………………………………………………………..…..26

Приложения…………………………...………………………………………....27

Введение

Во всем мире существует множество предприятий, которые используют для производства своей продукции машинное оборудование. Поэтому при его внедрении нужно составлять оптимальный план использования и замены оборудования. Задачи по замене оборудования рассматриваются как многоэтаповый процесс, который характерен для динамического программирования.

Многие предприятия сохраняют или заменяют оборудование по своей интуиции, не применяя методы динамического программирования. Применять эти методы целесообразно, так как это позволяет наиболее четко максимизировать прибыль или минимизировать затраты.

Целью данной работы является определение оптимальных сроков замены старого оборудования.

Задачи этой работы состоят:

· в нахождении условного оптимального решения задачи;

· в составлении оптимального плана замены оборудования.

Старение оборудования включает его физический и моральный износ. В результате чего увеличиваются производственные затраты, растут затраты на обслуживание и ремонт, снижается производительность труда и ликвидная стоимость. Критерием оптимальности является либо прибыль от эксплуатации оборудования, либо суммарные затраты на эксплуатацию в течение планируемого периода.

Курсовая содержит 2 главы, 12 таблиц, 1 приложение, 5 рисунков и оформлена на 30 страницах.

Глава 1. Теоретическое описание модели замены оборудования

1.1. Характеристика состояния хозяйствующего субъекта и выявление тенденций его развития

Для осуществления своей эффективной деятельности производственные объединения и предприятия должны периодически производить замену используемого ими оборудования. При этой замене учитывается производительность используемого оборудования и затраты, связанные с содержанием и ремонтом оборудования.

Характерным для динамического программирования является подход к решению задачи по этапам, с каждым из которых ассоциирована одна управляемая переменная. Набор рекуррентных вычислительных процедур, связывающих различные этапы, обеспечивает получение допустимого решения задачи в целом при достижении последнего этапа.

() (1.1)

(1.1) - принцип оптимальности Беллмана.

(1.2)

где t – возраст оборудования к началу k-го года ( k=1,2,3,4,5,6,7,8,9,10);

– управление, реализуемое к началу k-го года; P 0 – стоимость нового оборудования.

(1.2) - функциональное уравнение Беллмана.

1.2. Информационно-методическое обеспечение экономического моделирования

1.2.1. Методическая база решения модели

В задачах динамического программирования экономический процесс зависит от времени (от нескольких периодов (этапов) времени), поэтому находится ряд оптимальных решений (последовательно для каждого этапа), обеспечивающих оптимальное развитие всего процесса в целом. Задачи динамического программирования называются многоэтапными или многошаговыми. Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование многошаговых управляемых процессов и процессов, зависящих от времени. Экономический процесс называется управляемым, если можно влиять на ход его развития. Управлением называется совокупность решений, принимаемых на каждом этапе для влияния на ход процесса. В экономических процессах управление заключается в распределении и перераспределении средств на каждом этапе. Например, выпуск продукции любым предприятием – управляемый процесс, так как он определяется изменением состава оборудования, объемом поставок сырья, величиной финансирования и т.д. Совокупность решений, принимаемых в начале каждого года планируемого периода по обеспечению предприятия сырьем, замене оборудования, размерам финансирования и т.д., является управлением. Казалось бы, для получения максимального объема выпускаемой продукции проще всего вложить максимально возможное количество средств и использовать на полную мощность оборудование. Но это привело бы к быстрому изнашиванию оборудования и, как следствие, к уменьшению выпуска продукции. Следовательно, выпуск продукции надо спланировать так, чтобы избежать нежелательных эффектов. Необходимо предусмотреть мероприятия, обеспечивающие пополнение оборудования по мере изнашивания, т.е. по периодам времени. Последнее хотя и приводит к уменьшению первоначального объема выпускаемой продукции, но обеспечивает в дальнейшем возможность расширения производства. Таким образом, экономический процесс выпуска продукции можно считать состоящим из нескольких этапов (шагов), на каждом из которых осуществляется влияние на его развитие.

Началом этапа (шага) управляемого процесса считается момент принятия решения (о величине капитальных вложений, о замене оборудования определенного вида и т.д.). Под этапом обычно понимают хозяйственный год.

Динамическое программирование, используя поэтапное планирование, позволяет не только упростить решение задачи, но и решить те из них, к которым нельзя применить методы математического анализа. Упрощение решения достигается за счет значительного уменьшения количества исследуемых вариантов, так как вместо того, чтобы один раз решать сложную многовариантную задачу, метод поэтапного планирования предполагает многократное решение относительно простых задач.

Планируя поэтапный процесс, исходят из интересов всего процесса в целом, т.е. при принятии решения на отдельном этапе всегда необходимо иметь в виду конечную цель.

Предположим, какая-то система S находится в некотором начальном состоянии S 0 и является управляемой. Таким образом, благодаря осуществлению некоторого управления U указанная система переходит из начального состояния S 0 в конечное состояние S к. При этом качество каждого из реализуемых управлений U характеризуется соответствующим значением функции W(U). Задача состоит в том, чтобы из множества возможных управлений U найти такое U*, при котором функция W(U) принимает экстремальное (максимальное или минимальное) значение W(U*).

Задачи динамического программирования имеют геометрическую интерпретацию. Состояние физической системы S можно описать числовыми параметрами, например расходом горючего и скоростью, количеством вложенных средств и т.д. Назовем эти параметры координатами системы; тогда состояние системы можно изобразить точкой S, а переход из одного состояния S 1 в другое S 2 – траекторией точки S. Управление U означает выбор определенной траектории перемещения точки S из S 1 в S 2 , т.е. установление определенного закона движения точки S.

Статьи по теме: