Правила самостоятельного подбора. Соотношения основных физических и эксплуатационных параметров. Расчет расхода пара на производственное здание Пример расчета многоступенчатой паровой турбины

  • Алгоритм расчета дисперсионных характеристик плоского трехслойного оптического волновода
  • Амортизация как целевой механизм возмещения износа. Методы расчета амортизационных отчислений.
  • На предприятиях водяной пар расходуют на технологические и бытовые и силовые цели.

    Для технологических целей глухой и острый пар используют как тепло­носитель. Острый пар используют, например, для разваривания сырья в варильниках или нагрева и перемешивания жидкостей барботированием, для создания избыточного давления в автоклавах, а также на изменение агрегатного состояния вещества (испарение или выпаривание жидкости, сушка материалов и т.д.). Глухой пар используют в поверхностных теплообменниках с паровым обогревом. Давление пара, используемого на мясообрабатывающих предприятиях, колеблется от 0,15 до 1,2 МПа (1,5÷12 кг/см 2).

    Для каждой технологической операции с использованием водяного пара определяют его расход по данным теплового баланса каждого теплового процесса. При этом используют данные материальных балансов продуктовых расчетов. Для периодических процессов учитывают время термообработки по каждому циклу.

    В каждом конкретном случае тепловая нагрузка аппарата (затраченное тепло) может быть определена из теплового баланса процесса. Например, тепло, затраченное на нагрев продукта от начальной (t н) до конечной (t к) тем­пературы для аппарата непрерывного действия, определяют по формуле 72:

    Q = Gc (t к – t н)φ, (72)

    где Q – тепло, затраченное на нагрев, Дж/с (Вт), т.е. тепловая нагрузка аппарата;

    G

    с – удельная теплоемкость продукта при его средней температуре, Дж/кг·К;

    t к, t н – начальная и конечная температура, °С;

    φ – коэффициент, учитывающий потери тепла в окружающую
    среду (φ = 1,03÷1,05).

    Теплоемкость продукта выбирают либо по известным справочникам, ли­бо рассчитывают по принципу аддитивности для многокомпонентных систем.

    На изменение агрегатного состояния вещества (затвердение, плавление, испарение, конденсация) расходуется тепловая энергия, количество которой определяют по формуле 73:

    где Q – количество тепла, Дж/с (Вт);

    G – массовый расход продукта, кг/с;

    r – теплота фазового перехода, Дж/кг.

    Значение r определяют по справочным данным в зависимости от вида продукта и вида фазового перехода вещества. Например, теплота плавления льда принимается равной r 0 = 335,2·10 3 Дж/кг, жира

    r ж = 134·10 3 Дж/кг. Теплота парообразования зависит от давления в рабочем объеме аппарата: r = f (P a). При атмосферном давлении r = 2259·10 3 Дж/кг.

    Для аппаратов непрерывного действия рассчитывают расход тепла за единицу времени (Дж/с (Вт) – тепловой поток), а для аппаратов периодическо­го действия – за цикл работы (Дж). Чтобы определить расход тепла за смену (сутки), необходимо умножить тепловой поток на время работы аппарата в смену, сутки или на число циклов работы аппарата периодического действия и количество подобных аппаратов.

    Расход насыщенного водяного пара как теплоносителя при условии его полной конденсации определяют по уравнению:

    где D – количество греющего водяного пара, кг (или расход, кг/с);

    Q общ – общий расход тепла или тепловая нагрузка теплового аппарата (кДж, кДж/с), определяют из уравнения теплового баланса аппарата;

    – энтальпия сухого насыщен­ного пара и конденсата, Дж/кг;

    r – скрытая теплота парообразования, кДж/кг.

    Расход острого пара на перемешивание жидких продуктов (барботирование) принимают по норме 0,25 кг/мин на 1 м 2 поперечного сечения аппарата.

    Расход пара на хозяйственные и бытовые нужды по этой статье пар расходуется для нагрева воды для душей, прачечной, мытья полов и оборудования, прошпарки оборудования.

    Расход пара на прошпарку оборудования и инвентаря определяют по истечению его из трубы по уравнению расхода:

    (75)

    где D ш – расход пара на прошпарку, кг/смену;

    d – внутренний диаметр шланга (0,02÷0,03 м);

    ω – скорость истечения пара из трубы (25÷30 м/с);

    ρ – плотность пара, кг/м 3 (по таблицам Вукаловича ρ = f (ρ ));

    τ – время прошпарки, ч (0,3÷0,5 ч).

    Если в уравнении принять τ = 1 ч, то расход пара определяется в кг/ч.

    Расчет расхода пара по всем статьям сводят в таблицу 8.3.

    Таблица 8.3 - Расход пара, кг

    Статья расхода В час В смену В сутки В год
    Итого

    Удельный расход пара вычисляют по формуле 76.

    Поскольку вы оказались на нашем сайте, логичным будет предположить, что вас интересует промышленное паровое оборудование. Возможно вы подбираете компактный или мобильный электропарогенератор для своего цеха по производству молочной или хлебобулочной продукции, возможно вы ищете оптимальный вариант с паровым котлом на газе, жидком или твердом топливе для установки на бетонном заводе, а может ваш бизнес имеет отношение к производству пенополистирола и вопрос о техническом оснащении необходимо решать и не ошибаться с выбором.

    К сожалению, несмотря на огромную востребованность паровых генераторов и котлов для технологических нужд, к настоящему времени нет обобщенной информации для потенциальных потребителей, которая помогла бы им получить хотя-бы минимальное представление о преимуществах и недостатках различных моделей, а также самостоятельно подобрать те из них, что вписываются в бюджет и соответствуют требованиям процесса производства.

    Учитывая 20-летний опыт работы с такого рода оборудованием, учитывая требования технологических процессов, а также принимая во внимание достоинства и недостатки тех или иных моделей, не вдаваясь глубоко в теорию термодинамики, в популярной форме ознакомим вас с основными моментами, которые нужно знать при выборе электрических и топливоиспользующих котлов по производству сухого насыщенного пара.

    В заключение хотелось бы коротко остановиться на некоторых цифрах, которые помогут вам сориентироваться при выборе парового оборудования и которыми часто интересуются заказчики.

    1.- Зная мощность установки можно ориентировочно оценить расход пара (в кг/ч), разделив ее (мощность в кВт) на 0.75 . И, наоборот, умножаем расход на 0.75 - получаем мощность. В зависимости от КПД котла погрешность составит 5 - 7 %.

    2.- Перевести кКал в кВт можно, учитывая соотношение 1 кКал = 1.16 Вт

    3.- Точно определить мощность можно по разнице энтальпий, взятых из таблиц насыщенного и перегретого пара. Методика не сложная. Звоните. Проконсультируем.

    Также по таблице легко определить температуру пара при известном давлении и наоборот.

    ФРАГМЕНТ ТАБЛИЦЫ НАСЫЩЕННОГО ВОДЯНОГО ПАРА

    Температура,
    °С

    Давление (абсолютное)
    кгс/см 2

    Удельный объем
    м 3 /кг

    Плотность
    кг/м 3

    Удельная энтальпия жидкости i’
    кДж/кг

    Удельная энтальпия пара i’’
    кДж/кг

    Удельная теплота парообразования r
    кДж/кг

    4.- Для трехфазных электропарогенераторов условно можно принять следующие соотношения:

    100 кг/ч - 100 л/ч - 75кВт - 112А

    5.- Подбор сечения питающего кабеля зависит не только от потребляемого тока, но и от длины этого кабеля.

    6.- Полезная информация для владельцев пропарочных камер.

    При выборе парового котла без учета потерь можно приблизительно оценить расход пара, зная объем камеры по соотношению: на 1 куб.м - 2 кг сухого насыщенного пара низкого (до 0.7 атм) давления.

    7.- При установке двух и более парогенераторов на одного потребителя подключение к паропроводу должно производиться через коллектор (гребенку).

    3.2.2 Расчёт расхода пара на отопление и вентиляцию

    Расчёт затрат тепла на отопление и вентиляцию определяется по формуле:

    Q=q · V · (t пом t расч ) · Т год , кВт/год, (3.11)

    где q – удельный расход тепла на отопление и вентиляцию 1м 3 помещения при разности температур в 1°С, кВт/(м 3 .град).

    Усреднённое значение этой величины можно принять: для отопления – 0,45 · 10 -3 кВт/(м 3 .град), для вентиляции 0,9 · 10 -3 кВт/(м 3 .град).

    V – суммарный объём помещений участка без учёта объёма сушильных камер, м 3 ;

    t пом – температура в помещении, принимается 20°С;

    t расч – расчётная температура для отопления и вентиляции;

    Т год – продолжительность отопительного сезона определяется по формуле:

    Т год = 24*τ от, ч,

    где τ от – продолжительность отопительного сезона, дни.

    Т год = 24 · 205 = 4920 ч.

    Q от = 0,45 · 10 -3 · 4456,872 · (20-(-26)) · 4920 = 453,9 · 10 3 кВт/год.

    Q вент = 0,09 · 10 -3 · 4456,872 · (20-(-12)) · 4920 = 63,15 · 10 3 кВт/год.

    Таблица 3.3 – Расчёт расхода тепла на отопление и вентиляцию

    Наименование потребителей пара

    Удельный расход q, кВт/(м 3 .град).

    Объём помещения

    Разница температур внутри и снаружи здания

    (t пом – t расч),°С

    Продолжительность отопительного сезона

    Годовой расход тепла Q,

    Отопление сушильного участка

    453,9 · 10 3

    Вентиляция

    63,15 · 10 3

    517,05 · 10 3

    Расчёт годовой потребности в паре на отопление и вентиляцию определяется по формуле:

    3.2.3 Расчёт расхода тепла (пара) на бытовые нужды

    Расчёт расхода тепла (пара) на бытовые нужды определяется по формуле:

    где q – расход пара на 1 человека в смену;

    m – число человек, работающих в наиболее загруженную смену;

    n – число смен работы участка (целесообразно принять 2);

    τ – число дней работы участка в год.

    3.2.4 Расчёт общей годовой потребности в паре на технологические и бытовые нужды, отопление и вентиляцию

    Расчёт общей годовой потребности в паре на технологические и бытовые нужды, отопление и вентиляцию определяется по формуле:

    D общ = D уч год + D от + D быт , т/год . (3.14)

    D общ =8,13+891,47+2,6=902,2 т/год.

    Расход пара промышленным потребителям

    Для определения энтальпии пара в паровом коллекторе необходимо воспользоваться таблицами термодинамических свойств воды и пара, приведёнными в . Необходимые справочные материалы приведены в приложении Б данного пособия. По таблице Б1, в которой приведены удельные объёмы и энтальпии сухого насыщенного пара и воды на кривой насыщении для определённого давления приведены:

    Температура насыщения - t О C (столбец 2);

    Энтальпия воды на кривой насыщения - , кДж/кг (столбец 5),

    Энтальпия пара на кривой насыщения - , кДж/кг (столбец 6).

    Если необходимо определить энтальпии пара и воды при давлении, значение которого находится между величинами приведёнными в таблице, то нужно провести интерполирование между двумя соседними значениями величин между которыми находится искомая величина.

    Энтальпия пара в паровом коллекторе определяется по давлению пара в нём () по таблице Б.1. Приложения Б.

    Энтальпия конденсата, возвращаемого с производства, определяется по его температуре и по давлению конденсата по приложению А.

    Количество конденсата, возвращаемого с производства

    где – возврат конденсата с производства (задано).

    Расход пара на покрытие нагрузки на отопление и вентиляцию

    Температура конденсата греющего пара на выходе из поверхностного подогревателя принимается на 10-15 o С выше температуры нагреваемой среды на входе в этот подогреватель. В подогревателе 8 подогревается сетевая вода, которая поступает в него из обратного трубопровода тепловой сети с температурой 70 o С. Таким образом, принимаем температуру конденсата греющего пара на выходе из подогревателя 8 равной 85 o С.

    По этой температуре и давлению конденсата по таблице приложения А находим энтальпию конденсата:

    Расход пара на горячее водоснабжение

    Расход пара на теплофикационную установку

    Общий расход пара на покрытие производственной и жилищно-коммунальной нагрузок

    Расход пара на собственные нужды котельной принимается в диапазоне 15-30% от величины внешней нагрузки, т.е. расхода пара на покрытие производственной и жилищно-коммунальной нагрузок . Пар, идущий на собственные нужды, используется в тепловой схеме котельной для подогрева добавочной и подпиточной вод, а также для их деаэрации.

    Принимаем расход пара на собственные нужды равным 18%. Впоследствии эта величина уточняется в результате расчета тепловой схемы котельной.

    Расход пара на собственные нужды:

    Потери пара в тепловой схеме котельной составляют 2-3% от внешнего потребления пара, принимаем 3%.

    Количество пара, подаваемое через паровой коллектор после редукционно-охладительной установки:


    При прохождении пара через суженные сечения происходит процесс дросселирования, сопровождающийся уменьшением давления, температуры, увеличением объёма и энтропии пара. Для случая адиабатного процесса дросселирования выполняется условие:

    где: - энтальпия пара после дросселирования, - энтальпия пара до дросселирования.

    Таким образом, энергия пара в процессе дросселирования не изменяется. Температура насыщенного пара равна температуре насыщения (кипения) и является прямой функцией давления. Поскольку при дросселировании снижаются давление пара и температура насыщения, происходит некоторый перегрев пара. Для того чтобы пар после редукционно-охладительной установки оставался насыщенным в него подаётся питательная вода.

    Расход воды на РОУ определяется по соотношению:

    Энтальпия пара на выходе из котла определяется по давлению в барабане котла по таблице Б.1. Приложения Б,

    Энтальпия пара в паровом коллекторе нами определена ранее, .

    Давление питательной воды принимаем на 10% выше давления в барабане котла:

    Энтальпия питательной воды при и давлении 1,5 МПа определяется по таблице приложение А , .

    Полная производительность котельной.

    Статьи по теме: