Сущность сверления. Сверление отверстий в металле: способы, инструменты, полезные советы. Сверлильные станки и виды выполняемых работ

Слесарное дело: Практическое пособие для слесаря Костенко Евгений Максимович

2.10. Сверление и развертывание. Сверлильные станки

Сверлением называется выполнение в изделии или материале круглого отверстия с использованием специального режущего инструмента – сверла, которое в процессе сверления одновременно имеет вращательное и поступательное движение вдоль оси просверливаемого отверстия. Сверление применяется в первую очередь при выполнении отверстий в деталях, соединяемых при сборке.

При работе на сверлильном станке сверло выполняет вращательное и поступательное движение; при этом обрабатываемая деталь неподвижна. Обработка деталей на токарном станке, автомате или револьверном станке выполняется при вращении детали, а инструмент совершает только поступательное движение.

В зависимости от требуемой степени точности используют следующие виды обработки: сверление, рассверливание, зенкерование, развертывание, расточку, зенкование, зацентровывание.

На сверлильных станках можно выполнять следующие операции: сверление, рассверливание на больший диаметр ранее просверленного отверстия, зенкерование, развертывание, торцевание, цекование, зенкование, нарезание резьб.

Для выполнения операции сверления используются сверла с коническим или цилиндрическим хвостовиком, конусные переходные втулки, клинья для выбивания сверла, сверлильные самоцентрирующие патроны двух– и трехщековые, рукоятки для крепления сверл в патронах, быстрозажимные патроны, патроны пружинные с автоматическим отключением сверла, машинные тиски, коробки, призмы, прихваты, угольники, ручные тиски, наклонные столы, а также разного вида приспособления, ручные и механические сверлильные станки и дрели.

Различают сверлильные станки с ручным и механическим приводом. К ручным сверлильным станкам с ручным приводом относятся: коловороты, дрели, сверлильные трещотки и ручные сверлильные верстачные станки. К ручным сверлильным станкам с механическим приводом относятся электрические и пневматические дрели, позволяющие при использовании специальных хвостовиков сверлить отверстия в труднодоступных местах.

К сверлильным станкам с механическим приводом относятся вертикально-сверлильные, радиально-сверлильные, горизонтально-расточные и специальные сверлильные станки. Вертикально-сверлильные станки могут иметь устройства для применения многошпиндельных головок. Специальные сверлильные станки могут быть агрегатными, многопозиционными и многошпиндельными.

Вертикально-сверлильный станок отличается от других сверлильных станков тем, что имеет станину с вертикальным расположением направляющих, по которой может перемещаться стол станка. Кроме того, он имеет механизм подачи, насос для подачи охлаждающей жидкости, а также коробки скоростей для получения разных частот вращения сверлильного шпинделя станка.

На вертикально-сверлильных станках (в зависимости от типа) можно сверлить отверстия сверлами диаметром до 75 мм, на верстачных сверлильных станках – сверлами диаметром до 15 мм, на настольных сверлильных станках – сверлами диаметром до 6 мм. Ручными электрическими сверлильными дрелями (в зависимости от типа) можно сверлить отверстия диаметром до 25 мм, ручными пневматическими сверлильными машинами – сверлами диаметром до 6 мм.

Сверлильные трещотки используют для сверления отверстий в труднодоступных местах в стальных конструкциях. Ручной привод, обеспечиваемый колебательным движением рычага трещотки, создает вращение сверла и его подачу вдоль оси отверстия.

Недостатком сверления трещоткой является малая производительность и большая трудоемкость процесса.

Сверло – это режущий инструмент, которым выполняют цилиндрические отверстия (рис. 21).

Рис. 21. Сверла:

а – спиральные; б – перовые

По конструктивному оформлению режущей части сверла делятся на перовые, с прямыми канавками, спиральные с винтовыми канавками, для глубокого сверления, центровочные и специальные.

Спиральные сверла в зависимости от их выполнения делятся на скрученные, фрезерованные, литые (для больших диаметров), с пластинками из сплавов карбидов металлов и сварные.

Сверла изготавливают из инструментальной углеродистой стали У10А, У12А, легированной стали 9ХС или из быстрорежущей стали Р18, Р9, РЭМ. Часто используются сверла, облицованные пластинками из сплавов карбидов вольфрама и титана.

Спиральным сверлом выполняют отверстия, к которым предъявляются высокие требования по точности, отверстия, предназначенные для дальнейшей обработки развертыванием, расточкой или протягиванием, отверстия под нарезание резьб (табл. 7).

Таблица 7

Точность обработки отверст ий

Спиральное сверло состоит из хвостовика и рабочей части, которая делится на направляющую и режущую части. Между направляющей частью и хвостовиком находится шейка.

Хвостовик – это часть сверла цилиндрической или конусной формы (сверла по дереву имеют четырехгранный конический хвостовик), которая служит для закрепления сверла при конической форме в конических переходных втулках с конусом Морзе, а при цилиндрической – в двух-или трехкулачковом сверлильном патроне. Концевые втулки и сверлильный патрон закрепляются в отверстии шпинделя. Конусные хвостовики заканчиваются лапкой, которая служит для выбивания сверла из шпинделя или конусной переходной втулки. Цилиндрический хвостовик заканчивается поводком. Для сверления отверстий сверлильными трещотками или ручными коловоротами чаще всего используются сверла с квадратными хвостовиками. Сверла с цилиндрическим хвостовиком обычно имеют малые диаметры (до 20–30 мм).

Рабочая часть сверла состоит из направляющей и режущей частей.

Направляющая часть сверла – это часть, находящаяся между шейкой и режущей частью. Она служит для направления сверла вдоль оси отверстия. Направляющая часть имеет винтовые канавки для отвода стружки и стержень сверла. На наружной винтовой поверхности направляющей части сверла имеется ленточка.

Режущая часть спирального сверла состоит из двух режущих граней, соединенных третьей гранью – так называемой поперечной перемычкой.

Ленточкой называется узкий поясок вдоль винтовой канавки, плавно сбегающий к хвостовику. Цель ленточки – принять на себя часть трения сверла о стенки отверстия, появляющегося во время вхождения инструмента в материал. Диаметр сверла измеряется по расстоянию между ленточками.

Величина угла наклона винтовой канавки сверла зависит от вида обрабатываемого материала (табл. 8).

Процесс резания металла режущей кромкой осуществляется путем врезания ее в металл под действием вращения сверла и его осевой подачи. Величина угла режущей кромки определяется углом наклона винтовой линии и задним углом заточки сверла. Величина необходимого усилия подачи и сила резания определяются величиной переднего и заднего углов резания и величиной поперечной кромки. Уменьшить необходимое усилие подачи при сверлении можно за счет подточки поперечной кромки (перемычки) и выбора для данного материала оптимального угла резания.

Если сверло плохо сверлит, его следует заточить. Заточку можно выполнять вручную или машинным способом. Правильная заточка сверла дает возможность получать необходимые углы, удлиняет срок службы сверла, уменьшает усилия, а также дает возможность получать правильно выполненные отверстия.

Подбор необходимых для данного материала углов резания и заточка на специальных заточных станках для сверл обеспечивают получение правильных углов заточки и положение поперечной кромки в центре сверла. После заточки можно проверить углы заточки с помощью угломера или шаблона.

Перовые сверла (рис. 21, б ) обычно изготавливаются из углеродистой инструментальной стали У10А или У12А. В этих сверлах различают следующие элементы: двусторонняя режущая часть с углом 116°, односторонняя – с углом 90–120°, направляющая часть с углом 100–110°, конусная рабочая часть, шейка и хвостовик.

Двусторонняя режущая часть обеспечивает рабочее движение при вращении сверла в обе стороны. Односторонняя режущая часть обеспечивает работу сверла только в одном направлении.

Недостатком этих сверл является отсутствие направляющей и изменение диаметра при каждой заточке. Применяются для отверстий малого диаметра, которые не требуют высокой точности исполнения.

Перовые сверла с удлиненной направляющей частью обеспечивают лучшее направление и более точный размер отверстия, дают возможность получать одинаковый диаметр до тех пор, пока не сошлифу-ется направляющая часть. Однако эти сверла малопроизводительны.

Перед сверлением необходимо соответствующим образом подготовить материал (разметить и обозначить места сверления), инструмент и сверлильный станок. После закрепления и проверки установки детали на столе сверлильного станка или в другом приспособлении, а также после закрепления сверла в шпинделе станка приступают к сверлению согласно инструкции и требованиям безопасности труда. Нельзя забывать об охлаждении сверла.

В процессе сверления могут иметь место различные дефекты: поломка сверла, выкрашивание режущих кромок, отклонение сверла от оси отверстия и т. д.

В табл. 9 указаны виды дефектов, причины их возникновения, а также способы устранения.

Таблица 9

Дефекты сверления

Сверлильный кондуктор (рис. 22) – это приспособление с кондукторной плитой для обработки большого количества одинаковых деталей с одинаково расположенными отверстиями без предварительной разметки. Сверлильные кондукторы могут быть разной конструкции. Они могут устанавливаться на деталь и крепиться непосредственно к детали, могут представлять собой приспособление с кондукторной плитой, в которое устанавливается и зажимается деталь. В этом случае в кондукторной плите находятся соответствующим образом расположенные отверстия со вставленными в них кондукторными втулками с определенным диаметром отверстий, через которые сверло направляется в зажатую в приспособление для сверления деталь. В ряде случаев кондукторные плиты имеют отверстия без кондукторных втулок.

Рис. 22. Приспособление с кондукторной плитой для сверления: 1 – сверло; 2 – втулка; 3 – кондукторная плита; 4 – нижняя часть кондуктора; 5 – обрабатываемая деталь; 6– винт с гайкой-барашком

При сверлении важную роль играет охлаждение и применяемые охлаждающие жидкости. Смазоч-но-охлаждающая жидкость (СОЖ) выполняет три основных функции: является смазкой для уменьшения трения между режущим инструментом, сверлом, металлом детали и стружки, является охлаждающей средой, интенсивно отводящей тепло, возникающее в зоне резания, и облегчает удаление стружки из этой зоны.

СОЖ применяются при всех видах обработки металла резанием. Хорошая СОЖ не вызывает корродирования инструмента, приспособления и детали, не оказывает вредного влияния на кожу человека, не имеет неприятного запаха и хорошо отводит тепло. При сверлении отверстий в стали используется водный раствор мыла, 5 %-ный раствор эмульсии Э-2 или ЭТ-2; при сверлении в алюминии – 5 %-ный раствор эмульсии Э-2, ЭТ-2 или жидкость следующего состава: масло «Индустриальное» – 50 %, керосин – 50 %. При сверлении мелких отверстий в чугуне СОЖ не используют. При сверлении в чугуне глубоких отверстий используется сжатый воздух или 1,5 %-ный раствор эмульсии Э-2 или ЭТ-2. При сверлении меди и сплавов на ее основе применяется 5 %-ный раствор эмульсии Э-2, ЭТ-2 или масло «Индустриальное».

Чтобы получить в металле или детали отверстия с диаметром свыше 30 мм, следует применить двукратное сверление. Первая операция выполняется сверлом диаметром 10–12 мм, вторая – сверлом требуемого диаметра (рассверливание). При сверлении с двумя рассверливаниями или сверлении, рассверливании и зенковании значительно снижаются усилия резания и время выполнения операций.

Удалить из просверливаемого отверстия сломанное сверло можно путем вывертывания его в сторону, обратную спирали сломанной части, щипцами (если имеется выступающая часть сверла). Если сломанное сверло находится внутри материала, то просверливаемую деталь нагревают вместе со сверлом до покраснения, а затем постепенно охлаждают. Отпущенное сверло можно выкрутить специальным приспособлением или высверлить другим сверлом.

Центровочным сверлом называют инструмент, используемый для выполнения центровых отверстий в торцевых поверхностях валов. Различают два вида центровочных сверл: для обычных центровых отверстий без предохранительного конуса и для центровых отверстий с предохранительным конусом (рис. 23). Нормализованным углом обычного центровочного сверла является 60°, а сверла с предохранительным конусом – 60 и 120°.

Рис. 23. Центровочные сверла: а – обычные без предохранительного конуса; б – с предохранительным конусом

На больших и тяжелых валах центровое углубление с торцов выполняется за три операции: сверление, зенкование на 60° и зенкование предохранительного конуса на 120°.

Зенкерование – это увеличение диаметра ранее просверленного отверстия или создание дополнительных поверхностей. Для этой операции служат зенкеры , режущая часть которых имеет цилиндрическую, конусную, торцевую или фасонную поверхности (рис. 24).

Цель зенкерования – создать соответствующие посадочные места в отверстиях для головок заклепок, винтов или болтов или выравнивание торцевых поверхностей.

Рис. 24. Зенкеры:

а – цилиндрические для зенкерования сквозных или глубоких отверстий; б – конические для снятия фасок и образования конических углублений; в – торцевые для зенкерования торцевых поверхностей приливов (торцовки); г – фасонные для зенкерования фасонных поверхностей

Зенкеры выполняются из углеродистой инструментальной стали У10А, У12А, легированной стали 9ХС или быстрорежущей стали Р9, Р12. Они могут иметь напаянные режущие пластинки из твердых сплавов. Хвостовики зенкеров и корпуса наборных зенкеров делаются из стали 45 или 40Х.

Зенкеры могут быть сплошными цилиндрическими, коническими, фасонными, сварными с приваренным хвостовиком, насадными сплошными, насадными сборными. Зенкеры малых диаметров делаются обычно сплошными, а больших диаметров – сварными или насадными. Конусные зенкеры имеют углы при вершине 60, 75, 90 и 120°.

Развертка – это многолезвийный режущий инструмент, используемый для окончательной обработки отверстий с целью получения отверстия высокой степени точности и с поверхностью незначительной шероховатости.

Развертки подразделяются на черновые и чистовые. Окончательным развертыванием достигается точность 2–3 классов (10 –7 квали-тет), а при особо тщательном выполнении – 1-го класса (6–5 квалите-та) при шероховатости поверхности 7–8 классов чистоты (высота микронеровностей 1,25–0,32 мкм).

Развертывание дает окончательный размер отверстия, требуемый по чертежу. Диаметр отверстия под развертывание должен быть меньше окончательного на величину припуска на развертывание (табл. 10).

Таблица 10

Припуск на диаметр под развертывание после сверла, резца или зенкера, мм

Различают следующие виды разверток: по способу использования – ручные и машинные, по форме – с цилиндрической или конической рабочей частью, по точности обработки – черновые и чистовые, по конструкции – с цилиндрическим хвостовиком, с коническим (конус Морзе) хвостовиком и насадные. Насадные развертки могут быть цельными, со вставными ножами и плавающие. Ручные развертки могут быть цельными и разжимными. Развертки могут иметь простые и винтовые зубья. На рис. 25 представлены ручные развертки.

Рис. 25. Развертки:

а – коническая черновая; б – коническая промежуточная; в – коническая чистовая; г – цилиндрическая с прямыми зубьями; д – цилиндрическая регулируемая; е – цилиндрическая разжимная

Число зубьев развертки зависит от ее диаметра и назначения. Число зубьев у ручных и машинных разверток с прямыми зубьями чаще всего четное (например, 8, 10, 12, 14). Развертки со спиральными зубьями имеют лево– и правосторонние режущие части.

Разжимные и регулируемые развертки используются при ремонтных работах для развертывания отверстий, которые имеют разный допуск, а также для минимального увеличения уже окончательно выполненного отверстия.

В комплект конических разверток для гнезд с конусом Морзе входят три развертки: черновая, промежуточная и чистовая (коническая) развертки.

Котельные развертки находят применение при котельных работах для увеличения отверстий под заклепки.

Развертка имеет следующие элементы: рабочую часть, шейку и хвостовик (конусный или цилиндрический).

Хвостовики ручных трехперых разверток закрепляются в постоянных или регулируемых державках.

Развертки имеют неравномерный шаг режущих кромок: с целью улучшения качества отверстия и предупреждения его граненности зубья располагаются по окружности на разном расстоянии один от другого.

Для охлаждения инструмента, уменьшения трения, а также для увеличения срока службы режущей части инструмента используются СОЖ. В табл. 11 приведены составы СОЖ, используемые при развертывании отверстий в различных материалах.

Таблица 11

СОЖ, используемые при развертывании отверстий в разных материалах

Для изготовления разверток применяются углеродистые инструментальные стали У10А и У12А, легированные инструментальные стали 9ХС, ХВ, ХГСВФ, быстрорежущие стали Р9 и Р18, а также твердые сплавы марки Т15К6 для обработки стали, меди и других вязких металлов и марки ВК8 для обработки чугуна и других хрупких металлов. Развертки из быстрорежущей стали делаются с приваренными хвостовиками из стали 45. Корпуса сборных, а также регулируемых и насадных разверток делаются из конструкционных сталей.

Пробойник (рис. 26) – это слесарный инструмент, выполняемый из углеродистой инструментальной стали У7 или У8, который служит для пробивания отверстий в листовых или полосовых металлических или неметаллических материалах толщиной не более 4 мм.

Рис. 26. Пробойник:

а – сплошной для металлического листа;

б – пустотелый для кожи и пластмасс

Рабочая часть пробойника может иметь круглую, прямоугольную, квадратную, овальную или другую форму. Пробойник для кожи и жести имеет в рабочей части слепое отверстие, которое соединяется с продольным боковым отверстием, проходящим через стенку нижней части пробойника. Через это отверстие удаляются отходы.

Пробивание отверстия выполняется, когда допускается некоторое повреждение поверхности в зоне отверстия и не требуется чистота и точность выполнения отверстия.

При работе на сверлильных станках необходимо выполнять следующие требования безопасности.

Перед началом работы следует проверить техническое состояние сверлильного станка и инструментов. Включать и останавливать станок нужно сухими руками.

Работать на станке необходимо в соответствии с инструкцией по эксплуатации оборудования, а также в соответствии с инструкцией по охране труда. Следует использовать специальную рабочую одежду, обязательно подбирать волосы под головной убор.

Детали должны быть правильно и надежно закреплены в тисках или приспособлениях, имеющих хорошее техническое состояние. При сверлении малых отверстий левая рука, придерживающая деталь, должна оказывать сопротивление, противоположное направлению вращения шпинделя. Во время рабочего хода шпинделя сверлильного станка нельзя придерживать или тормозить шпиндель, менять скорость и подачу, очищать стол или деталь от стружки.

Сверло следует охлаждать СОЖ с помощью кисточки или поливом. Не допускается охлаждение влажными ветошью или тряпками.

Все поломки, которые можно устранить, должен устранять обученный этому работник.

Из книги Домашний мастер автора Онищенко Владимир

Из книги Слесарное дело: Практическое пособие для слесаря автора

Из книги Столярные, плотничные, стекольные и паркетные работы: Практическое пособие автора Костенко Евгений Максимович

14. Станки для изготовления ключей Станок с дешифратором позволяет изготавливать ключи для замка, когда отсутствует оригинальный ключ для копирования. Это возможно, поскольку изготовители замков часто выбивают код ключа на замках и ключах, и специалист-замочник сразу

Из книги Все о плитке [Укладка своими руками] автора Никитко Иван

2.14. Шлифование и шлифовальные станки Шлифованием называется обработка деталей и инструментов с использованием вращающихся абразивных или алмазных шлифовальных кругов, основанная на срезании зернами круга с поверхности очень тонкого слоя материала в виде мельчайших

Из книги автора

Глава 6 ДЕРЕВООБРАБАТЫВАЮЩИЕ СТАНКИ 1. Общие сведения Деревообрабатывающее оборудование разделяют на станки общего назначения, станки для специальных производств и универсальные. К станкам общего назначения относятся станки для раскроя досок, брусков, щитов, плит;

Из книги автора

2. Круглопильные станки Круглопильные станки применяют для раскроя пиломатериалов, заготовок, плитных материалов (фанеры, древесноволокнистых, древесностружечных плит). В зависимости от выполняемых операций станки бывают для поперечного и продольного раскроя.Для

Из книги автора

3. Продольно-фрезерные станки После раскроя пиломатериалы имеют неровную, шероховатую поверхность, риски, покоробленность и ряд других дефектов, устраняемых фрезерованием. В процессе фрезерования также получают выверенную поверхность, по которой можно выверить

Из книги автора

4. Фрезерные станки На фрезерных станках можно выполнять разнообразные работы: создавать профили у деталей путем отборки калевки, фальцов, пазов, гребней и т. п., выполнять гладкое фрезерование кромок, обрабатывать по периметру оконные створки, форточки, фрамуги, дверные

Из книги автора

5. Шипорезные станки Шипорезные станки предназначены для зарезки шипов и проушин. По конструкции они бывают одно– и двусторонние. На одностороннем шипорезном станке зарезку шипов и проушин ведут с одной стороны бруска, а на двустороннем – одновременно с обеих сторон.На

Из книги автора

7. Комбинированные станки На комбинированных станках можно выполнять ряд различных операций по обработке древесины. Наиболее часто встречаются станки со следующим сочетанием работ: фугование – рейсмусование – раскрой – сверление – шлифование; фугование –

Сверлением называется образование снятием стружки отверстий в сплошном материале с помощью режущего инструмента – сверла . Сверление применяют для получения отверстий не высокой степени точности, и для получения отверстий под нарезание резьбы, зенкерование и развёртывания.
Сверление применяется:
для получения неответственных отверстий невысокой степени точности и значительной шероховатости, например под крепёжные болты, заклёпки, шпильки и т.д.;
для получения отверстий под нарезание резьбы, развёртывания и зенкерование.
Сверление можно получить отверстие с точностью по 10-му, в отдельных случаях – по 11-му квалитету и шероховатостью поверхности Rz 320…80.
Свёрла бывают различных видов и изготовляются из быстрорежущих, легированных и углеродистых сталей, а также оснащаются пластинками из твёрдых сплавов.
Сверло имеет две режущих кромки. Для обработки металлов различной твёрдости, применяют свёрла с различным углом наклона винтовой канавки. Для сверления стали пользуются свёрлами с углом наклона канавки 18…30 градусов, для сверления лёгких и вязких металлов – 40…45 градусов, при обработки алюминия, дюралюминия и электрона – 45 градусов.
Хвостовики у спиральных свёрл могут быть коническими и цилиндрическими. Конические хвостовики имеют свёрла диаметром 6…80мм. Эти хвостовики образуются конусом Морзе.
Шейка сверла, соединяющая рабочую часть с хвостовиком, имеет меньший диаметр, чем диаметр рабочей части.
Свёрла бывают оснащённые пластинками из твёрдых сплавов, с винтовыми, прямыми и косыми канавками, а также с отверстиями для подвода охлаждающей жидкости, твёрдосплавных монолитов, комбинированных, центровочных и перовых свёрл. Эти свёрла изготовляют из инструментальных углеродистых сталей У10, У12, У10А и У12А, а чаще – из быстрорежущей стали Р6М5.
Чтобы повысить стойкость режущего инструмента и получить чистую поверхность отверстия, при сверлении металлов и сплавов пользуются охлаждающей жидкостью (см. ниже).

Просверливаемый материал

Мыльная эмульсия или смесь минерального и жирных масел

Мыльная эмульсия или сурепное масло

Алюминий

Мыльная эмульсия или обработка всухую

Дюралюминий

Мыльная эмульсия, керосин с касторовым или сурепным маслом

Мыльная эмульсия или смесь спирта со скипидаром

Резина, эбонит, фибра

Обработка всухую


Основные сведения о техниках выполнения типовых слесарных операций.
Данный модуль посвящен изучению техник выполнения основных слесарных операций, которые встречаются в практической работе слесаря. Семь учебных разделов модуля содержат информацию о методиках проведения основных операций с металлом.В разделе 3 рассматриваются основные сведения о техниках обработки отверстий.

Смотреть:
Раздел 3.Основные сведения о техниках обработки отверстий.

Л абораторная работа № 3

Сверлильные станки и виды выполняемых работ

Цель работы: изучение устройства и назначения сверлильного станка, выполняемых на нем работ, применяемого центрового инструмента.

В процессе выполнения работы следует изучить основные узлы сверлильного станка их кинематику и функциональное назначение. Определить основные и вспомогательные движения и элементы режима резания при выполнении сверлильных работ.

Существуют различные виды сверлильных станков: вертикально-сверлильные, радиально-сверлильные, горизонтально-расточные, агрегатные, координатно-расточные.

Сверлильные станки предназначены для сверления, зенкерования, развертывания, нарезания резьбы и других видов обработки отверстий (зенкование, цекование и др.)

Типичным вертикально-сверлильным станком является станок модели 2H118, предназначенный для обработки деталей малых и средних размеров (рисунок 1).

На фундаментной плите 1, являющейся основанием станка, укреплена монолитная колонна 9 (станина станка), имеющая вертикальные направляющие в форме ласточкина хвоста. По вертикальным направляющим колонны перемещается стол 2, служащий для крепления обрабатываемых заготовок, и сверлильная головка 7, в которой монтируются все основные узлы станка: коробка скоростей 5, коробка подач 4 и шпиндель 3. Привод станка включает электродвигатель 6 мощностью 1,5 кВт. Управление механизмом подач осуществляется рукояткой 8.

При выполнении на станке сверлильных работ главным рабочим движением является вращение инструмента (сверла, зенкера, развертки, метчика, зенковки, и т.д.), а движением подачи – перемещение инструмента в осевом направлении (в данном случае, вертикальном). Главное движение передается шпинделю от электродвигателя через коробку скоростей, обеспечивающую различные частоты вращения шпинделя. Механизм подачи обеспечивает различные скорости вертикального перемещения шпинделя с инструментом.

Сверление – это получение отверстия в сплошной заготовке. Операция выполняется сверлом. Конструкции сверл различного применения представлены на рисунке 2. Конструкция спирального сверла представлена на рисунке 3.

С помощью спиральных сверл проделывают отверстия диаметром до 80мм. Цилиндрический хвостовик обычно бывает у сверл диаметром 12мм, он служит для закрепления в сверлильном патроне и заканчивается поводком, предохраняющим сверло от проворачивания. Конический хвостовик (конус Морзе) заканчивается лапкой, служащей для передачи крутящего момента и для извлечения инструмента из шпинделя. Между хвостовиком и рабочей частью у сверл диаметром более 5 мм есть шейка, на которой наносится маркировка инструмента. Шейка служит для выхода шлифовального круга при изготовлении и заточке сверла, а также для нанесения маркировки. Шейка может отсутствовать в случае, если диаметр хвостовика больше диаметра калибрующей части сверла.

Рабочая часть сверла имеет две спиральные канавки и заканчивается заборным конусом - режущей частью. В пересечении винтовых канавок с конусом (передней и главной задней поверхностей) образуются две главные режущие кромки, выполняющие основную работу резания (рис. 4).

Главные режущие кромки при сопряжении друг с другом образуют поперечное лезвие - перемычку (вспомогательная режущая кромка). Перемычка располагается относительно главных режущих кромок под углом
и режет металл с затруднением. Для того чтобы сверло не сместилось, предварительно производят центровку заготовки коротким спиральным сверлом большого диаметра или специальным центровочным сверлом с углом при вершине 90 градусов. Отверстия диаметром более 30 мм просверливаются в два приема. Сначала сверлится отверстие диаметром, немного превышающим длину перемычки сверла, а затем отверстие рассверливается до необходимого диаметра.

Для уменьшения трения направляющей части сверла о стенки просверливаемого отверстия ее диаметр имеет переменное сечение, уменьшающееся к хвостовику. В этих же целях наружная поверхность направляющей части сверла профрезерована и оставлены две выступающие ленточки, расположенные вдоль винтовых канавок. Кромки ленточек зачищают цилиндрическую поверхность просверливаемого отверстия, поэтому их считают вспомогательными режущими кромками. Таким образом, у спирального сверла имеется пять режущих кромок - две главные и три вспомогательные.

Две главные режущие кромки образуют угол при вершине (угол в плане). Для сверления мягких материалов
, для твердых и хрупких
. Стандартные сверла рассчитаны на сверление конструкционных сталей и имеют угол
.

При сверлении отверстия, глубина которого больше его диаметра, сверло периодически выводят из обрабатываемого отверстия и очищают канавки сверла и отверстие заготовки от накопившейся стружки. Для уменьшения трения инструмента о стенки отверстия сверление производят с подводом смазочно-охлаждающей жидкости (СОЖ), особенно при обработке стальных и алюминиевых заготовок. Чугунные, латунные и бронзовые заготовки можно сверлить без охлаждения. Применение СОЖ позволяет повысить скорость резания в 1,4-1,5 раза.

Для повышения эффективности работы спиральными сверлами наряду с предварительным рассверливанием отверстий используют такие способы, как подточка поперечной кромки, изменение угла при вершине, подточка ленточки, двойная заточка.

Формы заточки режущей части сверла представлены на рисунке 5: а) – нормальная, б) – нормальная с подточкой перемычки, в) – нормальная с подточкой перемычки и ленточки, г) – двойная с подточкой перемычки, д) – двойная с подточкой перемычки и ленточки.

Элементы режима резания при сверлении:

- скорость резания (м/мин), окружная скорость точки на режущей кромке, наиболее удаленной от оси сверла:

;

- наружный диаметр сверла, мм;

- частота вращения сверла, об/мин.

Подача сверла (мм/об), это величина осевого перемещения сверла за один оборот. Глубина резания(мм):

при сверлении
,

при рассверливании
,

где - диаметр предварительно просверленного отверстия (мм).

Порядок выполнения работы:

1. Изучить методические указания к лабораторной работе.

2. Получить индивидуальное задание у преподавателя, включающее модель станка, а также движения станка и элементы режима резания, параметры которых необходимо рассчитать.

3. Изучить функциональное назначение основных узлов сверлильного станка, выполнить эскиз с общей компоновкой станка, где обозначить основные узлы.

4. Изучить кинематическую схему сверлильного станка. Составить расчетные выражения и определить скорости заданных преподавателем движений станка. Зарисовать кинематические схемы.

5. Изучить применяемый на станке инструмент, его геометрию.

6. Составить отчет к лабораторной работе в который включить все ранее перечисленные пункты.

Обеспечение качества обработки при сверлении

Сверление отверстий с параллельными осями

В зависимости от характера производства одновременная об-работка этих отверстий производится либо на многошпиндельных станках с регулируемым положением шпинделей, либо многошпин-дельными головками, установленными на одно-шпиндельных стан-ках или силовых головках агрегатного станка. При сверлении с применением многошпиндельных головок сверло направляется по кондукторным втулкам, устанавливаемым в кондукторе или в прижимной кондукторной плите. В последнем случае обрабатывае-мую деталь устанавливают на столе станка в приспособлении, ко-торое ориентируется с многошпиндельной головкой при помощи направляющих колонок.

Сверление боковых отверстий

При обработке на многошпиндельных станках четырех и бо-лее отверстий, применение ручной подачи оказывается нерацио-нальным, в виду увеличения осевых усилий и неравномерности по-дач. В связи с этим получили распространение специальные мно-гопозиционные станки с пневмогидравлическим приводом. На та-ком станке возможна обработка деталей, имеющих радиально расположенные отверстия в различных по высоте плоскостях Пе-реналадка станка заключается в смене кондуктора, зажимных цанг, сверл и установке сверлильных головок под соответствующим углом.

Быстрая переналадка, небольшие потери времени, совмеще-ние машинного времени при сверлении дают возможность приме-нять этот станок в условиях серийного и даже мелкосерийного производства.

Сверление отверстий расположенных во взаимно перпенди-кулярных областях.

Одновременно такие отверстия можно обрабатывать на агре-гатных станках, скомпонованных из нормализованных узлов.

Возможные дефекты просверленных отверстий

1. Диаметр просверленного отверстия немного большее диа-метра сверла. Причины: режущие кромки сверла неодинаковой длины. Дефект неисправим.

2. Ось отверстия не совпадает с осью детали. Причина: увод сверла в сторону в начале сверления. Дефект неисправим.

3. Диаметр отверстия больше диаметра сверла и коническое дно ступенчатое. Причина: неодинаковые длина и наклон режущих кромок и оси сверла. Дефект неисправим.

4. размеры отверстия по краям больше, чем в середине. При-чина: сверло установлено выше или ниже оси центра.

5. Ось отверстия не совпадает с осью детали в конце отвер-стия. Причина: в материале (на пути сверления возможны ракови-на. Дефект неисправим.

6. Шероховатость поверхности отверстия не соответствует за-данной. Причина: большая подача сверла, затупилось или непра-вильно заточено сверло, износ ленточек, нерегулярное удаление стружки из отверстия.

Сверление – это технологический процесс, предполагающий использование спиральных или других сверл. В результате применения этого режущего инструмента в заготовках или полуфабрикатах появляются отверстия заданного диаметра и требуемой глубины.

Во время сверления происходит образование стружки, которая представляет собой частицы металла, отделенные режущим инструментом.

При сверлении непосредственный процесс резания осуществляется с помощью комбинации двух движений режущего инструмента. Он перемещается по отношению к обрабатываемой детали поступательно вдоль оси вращения, на рабочей подаче.

Сверление на сегодняшний день является самым распространенным технологическим процессом, при помощи которого получают отверстия.

В общем объеме операций по механической обработке различных элементов конструкций, сверлению принадлежит довольно значительная доля. Дело в том, что в подавляющем большинстве деталей самых разнообразных машин и механизмов их конструкторами предусматривается наличие крепежных и посадочных отверстий.

Те отверстия, которые получают при помощи технологического процесса сверления, используются для того, чтобы через них соединять детали винтами, болтами, заклепками, шпильками и т.п., а также для того, чтобы производить в них нарезку резьбы.

Сверление сквозных и глухих отверстий

Если внимательно посмотреть на детали различных машин и механизмов, то выяснится, что в них наличествует по большей части два типа отверстий: сквозные и глухие. Первые, как нетрудно догадаться, проходят через всю толщу детали, а вторые заглубляются только на определенное расстояние.

Когда сверлятся сквозные отверстия, то режущий инструмент, в момент выхода перемычки сверла, сопротивление процессу резания снижается, а значит необходимо существенно уменьшить усилие подачи, иначе сверло может опуститься чрезмерно резко, «захватить » с собой значительный слой материала, заклинить и сломаться.

Риск, что произойдет именно так, особенно велик при сверлении тонких деталей, отверстий, которые располагаются друг по отношению к другу под прямым углом, а также прерывистых отверстий. Именно по этой причине сверление сквозных отверстий происходит следующим образом: если технологический процесс предусматривает высокую скорость подачи, то перед выходом сверла из отверстия она существенно уменьшается. В тех случаях, когда подача режущего инструмента осуществляется вручную, она производится плавно и осторожно.

Есть свои особенности и при сверлении глухих отверстий . Заключаются они в том, каким именно образом определяется, на какую именно глубину должно погружаться сверло. С точки зрения технологии, глухие отверстия сверлятся одним из трех основных способов:

1) В тех случаях, когда оборудование, на котором происходит сверление глухого отверстия, имеет функцию остановки подачи режущего инструмента по достижении им определенной глубины, то задействуется именно она. При этом просто выставляется то значение глубины, на которую следует произвести сверление.

2) В тех случаях, когда оборудование не располагает такого рода функционалом, то для зажима режущего инструмента чаще всего используют патроны, которые оснащены регулируемыми упорами. Именно по ним и выставляется необходимая глубина сверления.

3) В тех случаях, когда не требуется достижения высокой точности глубины сверления, а патрона с упором нет в наличии, то изготавливают специальное приспособление, которое имеет форму втулки определенной длины и устанавливается на сверле в качестве упора. Еще проще просто сделать на режущем инструменте метку (скажем, с помощью мела или карандаша), и сверло погружается в материал только до нее.

Рассверливание отверстий

Рассверливание представляет собой технологическую операцию, производимую для увеличения диаметра ранее просверленных отверстий до определенной величины. Оно производится с помощью сверла большего диаметра.

В тех случаях, когда мощности оборудования недостаточно для сверления отверстий большого диаметра, то эта операция происходит в несколько этапов. Именно тогда чаще всего и используется рассверливание. Обычно оно производится тогда, когда диаметр итогового отверстия превышает 25 миллиметров.

Сначала засверливается отверстие сверлом, диаметр которого равен половине толщины перемычки второго сверла, которое впоследствии и используется для рассверливания. Это необходимо для того, чтобы существенно снизить осевое давление на режущий инструмент. Что касается режимов резания, то при рассверливании они в большинстве случаев бывают такими же, что и при сверлении.

Сверление представляет собой технологический процесс, для которого используется специальный режущий инструмент. С его помощью создаются другие поверхности деталей, имеющие предварительно заданные размеры, форму и качество.

сверление растачивание станок отверстие

Сверлильные и расточные станки относятся к группе часто используемых металлорежущих станков. Принцип их действия основан на том, что методом расточки при помощи резцов производится обработка стенок отверстий круглых сечений.

Сверление применяется: для получения неответственных отверстий, невысокой степени точности и чистоты, например под крепежные болты, заклепки, шпильки. Рассверливанием называется процесс увеличения диаметра отверстия при помощи сверла (рисунок 2).

Отверстия применяются для соединения деталей болтами, винтами, заклепками или другими крепежными деталями; получения и под последующее нарезание резьбы.

Точность сверления может быть повышена благодаря тщательному регулированию станка, правильно заточенному сверлу или сверлением при помощи специального приспособления, называемого кондуктором.

При сверлении различают сквозные, глухие и неполные отверстия. Высококачественное отверстие обеспечивается правильным выбором приемов сверления, правильным расположением сверла относительно обрабатываемой поверхности и совмещением оси сверла с центром (осью) будущего отверстия

Процесс резания при сверлении может быть осуществлен при наличии двух рабочих движений режущего инструмента по отношению к обрабатываемой детали: вращательного движения и подачи.

Для сверления обрабатываемую заготовку (деталь) неподвижно закрепляют в приспособлении, а сверлу сообщают два одновременных движения

  • · вращательное - которое называется главным (рабочим) движением, или движением резании;
  • · поступательное направленное вдоль оси сверла, которое называется движением подачи.

При сверлении под влиянием силы резания происходит отделение частиц металла и образование элементов стружки

Для получения отверстий под нарезание резьбы, применяется развертывание и зенкерование Рассверливанием называется процесс увеличения диаметра отверстия при помощи сверла.

Рисунок 2 Рабочие движения при сверлении

Скоростью резания V называется окружная скорость сверла, измеряемая по его наружному диаметру. Скорость резанья рассчитывается по формуле:

где v - скорость резанья, D-диаметр сверла, n- число оборотов в минуту сверла;

Величина скорости резанья зависит от обрабатываемого материала, диаметра и материала сверла и формы его заточки, подачи, глубины резания.

Подача s -- величина перемещения сверла вдоль оси за один оборот или за один оборот заготовки (если вращается заготовка, а сверло движется поступательно). Она измеряется в мм/об. так сверло имеет две режущие кромки, то подача на одну режущую кромку будет:

Плавильный выбор подачи имеет большое значение для стойкости режущего инструмента. Всегда выгоднее работать с большой подачей и меньшей скоростью резания, в этом случае сверло изнашивается медленнее.

Однако при сверлении отверстий малых диаметров величина подачи ограничивается прочностью сверла. С увеличением диаметра сверла прочность его возрастает, позволяя увеличивать подачу; следует учесть, что увеличение подачи ограничивается прочностью станка.

При выборе режимов резания в первую очередь подбирают наибольшую подачу в зависимости от качества обрабатываемой поверхности, прочности сверла и станка и других факторов; затем устанавливают такую максимальную скорость резания, при которой стойкость инструмента между переточками будет наибольшая.

Для обработки точных отверстий со строгими требованиями по размерам прямолинейности осей, межосевым расстоянием, а также для образования отверстий больших диаметров применяют операцию расточки.

Растачивание - процесс механической обработки внутренних поверхностей расточными резцами для увеличения их диаметра. Осуществляется при помощи, расточных металлорежущих станков. Сущность процесса расточки состоит:

  • · в обработке отверстий больших диаметров;
  • · в растачивании отверстий с выдержкой высокоточных размеров по величине, сносности, данной координате;
  • · в сверлении отверстий без предварительной разметки по заданным координатам, обеспечивая большую точность межосевых расстояний и перпендикулярность отверстий.

Растачивание производится расточными резцами. На расточной резец действуют сила резания, которую можно измерить .

Статьи по теме: