Низкоинтенсивное лазерное излучение при лечении ишемической болезни сердца. Механизмы действия и биологические эффекты низкоинтенсивного лазерного излучения. Механизмы биологических эффектов низкоинтенсивного лазерного излучения


В настоящее время трудно представить область медицины, где в терапевтических целях при различных заболеваниях не применялось бы низкоинтенсивное лазерное излучение (НИЛИ). Особенно за последнее десятилетие накоплен большой опыт
по использованию НИЛИ, что способствовало выделению квантовой терапии как перспективной отрасли медицинской науки, обеспечившей прогресс многих областей медицины.
В биологическом плане наиболее изучено лазерное излучение в красном (длина волны 0,63 мкм) и инфракрасном (длина волны 0,89 мкм) диапазоне спектра, оказывающее многофакторное влияние на организм. Однако многие стороны механизма взаимодействия лазерного излучения с биообъектом до настоящего времени остаются не до конца выясненными.
Данные литературы и полученные нами результаты клинико-лабораторных исследований свидетельствуют о том, что НИЛИ даже при местном воздействии вызывает общую реакцию организма в виде комплексного ответа всех систем гомеостаза, оказывая благотворное влияние в целом. Это объясняется трансформацией и передачей энергии облучения за пределы облученного участка через жидкие среды организма за счет рефлекторных механизмов, а также по системе фоторегуляции [Илларионов В.Е., 1992].
При воздействии НИЛИ в организме происходят изменения на субклеточном, клеточном, тканевом, органном, системном и организменном уровнях. Возникающие нервно-рефлекторные и нервно-гуморальные реакции находят отражение в виде комплекса адаптационных и компенсаторных реакций. Первоначальным звеном при этом является фотоакцепция квантов света фоторецепторами внутриэпидермальных макрофагов с включением реакции микрососудов сосочков дермы в области лазерного воздействия. Эта реакция приобретает всеобщий характер уже спустя 10 мин после лазеротерапии, т.е. энергия лазерного излучения первично поглощается акцепторами, которые переходят в активное состояние и запускают регулируемые ими биохимические процессы.
НИЛИ при действии на биологические ткани вызывает широкий спектр фото физических и фотохимических изменений, основными из которых являются внешний и внутренний фотоэффекты, электролитическая диссоциация молекул и различных комплексов. При внешнем фотоэффекте электрон, поглотив фотон, не покидает вещество, а переходит на более высокие энергетические уровни (внутренний фотоэффект). При этом под действием света изменяется электропроводимость тканей и диэлектрическая проницаемость вещества в результате перехода в возбужденное состояние части атомов и молекул; возникает разность потенциалов между различными участками освещаемого биообъекта. Кроме того, НИЛИ нарушает слабые взаимодействия атомов и молекул вещества, возникает электрическая диссоциация.
Эти происходящие различные физико-химические процессы приводят к биологическим реакциям: к изменению активности клеточных мембран, к активации ядерного аппарата, системы ДНК - РНК - белок; интенсификации процессов гликолиза, активации биоэнергетических систем ферментов (в том числе дегидрогеназ), щелочной и кислой фосфатаз и активации процессов пролиферации [Кару Т.Й., 1986; Елисеенко В.И., 1997].
Весь этот комплекс реакций вызывает сокращение длительности фаз воспаления и интерстициального отека, улучшение микроциркуляции и регионарного кровообращения, что вместе с ускорением метаболических процессов и увеличением митотической активности клеток способствует регенерации. Кроме того, отмечены также обезболивающий, десенсибилизирующий, иммунокорригирующий, гипокоагулирующий, антистрессовый и другие эффекты лазерного воздействия [Полонский А.К., 1985].
В последние годы обнаружено, что в базальной части эпидермиса кожи содержится в высокой концентрации вещество, идентичное тимопоэтину, который регулирует созревание Т- лимфоцитов. Отсюда, возможно, влияние лазерного воздействия на повышение иммунной защиты организма - от регуляции созревания Т-лимфоцитов до усиления специфической реакции. По данным исследований, катализатором превращения света в конечный фотобиологический эффект является медь, входящая в состав фермента каталазы, которая играет ведущую роль в адсорбции излучения. Поэтому включение ионов меди в кожу в зоне лазерного воздействия расширяет диапазон восприятия ионов света, увеличивая глубину проникновения энергии квантов НИЛИ.
Действие лазерного излучения на систему иммунитета складывается также из непосредственного влияния данного физического фактора на иммуноглобулины, мембранно-рецепторный аппарат иммунокомпетентных клеток, состояние их микроокружения и вторичного неспецифического изменения иммунологической реактивности в процессе реализации адаптационной реакции на лазерное воздействие.
Обнаружена ведущая роль жидкокристаллических структур жидких сред организма в реализации биологических эффектов лазерного излучения. Жидкие среды (водные структуры клеток, плазмы крови, лимфы и др.), являясь липотропными жидкими кристаллами, под действием лазерного излучения подвергаются неспецифической структурной альтерации, что обеспечивает изменение функционирования отдельных тканей и организма в целом. Это в свою очередь затем проявляется противоотечным, противовоспалительным, биостимулирующим и иммуномодулирующим действием НИЛИ [Лисиенко В.М., Шурыгина Е.П., 1994].
Полученные нами данные по влиянию НИЛИ на калликре- ин-кининовую систему крови и иммунитет при гнойно-септических заболеваниях у детей приведены в соответствующих разделах настоящей работы.
Кроме того, известно, что лазерная биостимуляция может являться результатом попадания излучения в одну из полос поглощения кислорода, переходящего в синглетное (активное) состояние и индуцирующего в тканях окислительные процессы.
Таким образом, в последние годы метод лазерной биостимуляции оценивается в основном с трех позиций - фоторегу- ляторной, "кислородной" и "жидкостной" гипотез, т.е. лазерное излучение может восприниматься биологическими системами на любом уровне и адресовано организму в целом.
Первоначально НИЛИ использовалось преимущественно для лечения гнойных ран сфокусированным или расфокусированным лучом; затем стало применяться для облучения рефлексогенных зон или биологически активных точек.
С успехом используется НИЛИ в легочной и абдоминальной хирургии как для лечения послеоперационных ран, так и для профилактики их нагноений, что способствовало снижению числа осложнений, особенно у фтизиохирургических больных.
В последующем с развитием эндоскопической техники появилась возможность эндобронхиального воздействия НИЛИ через бронхоскоп при острых и хронических неспецифических заболеваниях легких, что обеспечивало регенерацию бронхиального эпителия и восстановление местной иммунной защиты слизистой оболочки бронхов.
Специально сконструированные волоконно-оптические лазерные световоды способствовали внедрению в клиническую практику внутриполостной лазеротерапии при лечении гнойных заболеваний легких и плевры путем подведения лазерного излучения через дренажи или чреспункционно.
Пионерами разработки и применения внутриполостной лазеротерапии были сотрудники МОНИКИ [Сазонов А.М. и др., 1985].
В дальнейшем, особенно в последнее десятилетие, возросла роль применения НИЛИ во многих областях медицины в нашей стране и за рубежом; изучаются механизмы взаимодействия лазерного излучения с биотканью на клеточном, субклеточном и молекулярном уровне, что создает основы для патогенетического применения НИЛИ и системного анализа его действия; разрабатываются и внедряются методики внутривенного и чрескожного облучения крови и лимфы у больных с различными заболеваниями. Приоритет во всех этих разработках принадлежит отечественным ученым.
Способность НИЛИ сокращать и уменьшать воспалительную реакцию, вызывать стимуляцию обмена в тканях и процессов регенерации, а также простота и безболезненность про-

  1. - 7495

а - 7-дневная культура ткани легкого ребенка (контроль). Описание в тексте; б - та же культура после облучения гелий-неоновым лазером. Доза поглощенной энергии 0,52 Дж/см г. Увеличение фибробластов и цитоплазмы клеток, образование структур, напоминающих альвеолы; в - та же культура после облучения дозой менее 0,15 Дж/см 1. Пролиферация клеток отсутствует.

водимой лазеротерапии позволила нам впервые у детей (с 1985 г.) применить внутриплевральную лазеротерапию гелий- неоновым лазером в комплексном лечении осложненных форм острой гнойной деструктивной пневмонии.
Центральное место в клинико-экспериментальном обосновании лазерной терапии занимает вопрос о дозах лазерного воздействия.
Известно, что превышение оптимальных доз лазерного излучения может привести к различным нарушениям в организме, порой и к деструктивным.
Нами в эксперименте совместно с ДА. Егор киной для определения оптимальной дозы лазерного воздействия, а также изучения влияния различных его доз на ткань легкого и плевры у детей была выращена культура легочной ткани из клеток неизмененного резецированного участка легкого детей, оперированных по поводу хронических воспалительных процессов. Доза облучения гелий-неоновым лазером сформированных клеток монослоя (7-10-е сутки) составляла от 0,06 до 1,12 Дж/см2 и четырех экспозиций (1, 3, 5, 7 мин) на расстоянии 2-3 см от источника света. В результате были выявлены оптимальные
сразнению с контролем набился 1??
^Sr==SsSS1
SSS*”-=2s
зжиуче,
альдым
НСГСЛОЯ VJ

Монсрлоя
Пос: ,
sSSESSSSS?
аосцессы, напряженные бул- лостная лазеротерапия излучением iJSoSro с



плевральной полости.

Рис. 5.3. Подсоединение световода к источнику излучения.
доставкой излучения в полость через дренаж по кварц-поли- мерному световоду с помощью специального механизма юстировки. Нить кварцевого монокристалла, диаметром 600 мкм, покрыта полиэтиленовой оболочкой. Дистальные концы световодов специально обработаны (рис. 5.3) для обеспечения сферической или цилиндрической индикатриссы рассеивания с целью получения равномерного распределения мощности излучения по поверхности патологического очага - разработка сотрудников Радиотехнического института на базе МОНИКИ (рис. 5.4).
Разовая доза облучения составляет от 0,15 до 0,52 Дж/см2, а суммарная доза - от 2,1 до 5,2 Дж/см2 за 4-10 сеансов ежедневно или через день, в среднем - 8. Только в 4 случаях у больных с длительно существующей эмпиемой плевры (более

  1. мес), когда до лазерной терапии безуспешно проводилась временная окклюзия бронхов и заклеивание свищей медицинским клеем при торакоскопии, потребовалось для облитерации бронхоплевральных свищей провести от 12 до 16 сеансов с перерывом в 10 дней.
Стерилизацию световода проводят замачиванием в растворе

Рис. 5.4. Различные формы индикатрисе для облучения плевральной полости и внутрилегочных булл, а - сферическая индикатрисса свечения; б - цилиндрическая индикатрисса свечения: 1 - полость эмпиемы.
йодопирона или хлоргексидина в течение 10 мин с последующей обработкой рабочей его части спиртом. Мощность светового пучка на конце световода определяется перед каждым сеансом с помощью прибора ИМО-2 или дозиметром другого типа.
Для усиления эффекта лазерного излучения в качестве фотосенсибилизатора можно использовать промывание полостей растворами хлорофиллипта или бриллиантового зеленого.
В каждом случае для достижения выраженного клинического эффекта следует подбирать оптимальные значения составляющих параметров дозы облучения (плотность потока мощности и время воздействия). Расчет разовых доз производится по формуле:

где Е- разовая доза (Дж/см2); N- мощность лазерного света на конце световода (Вт); Т- экспозиция (с); р - коэффициент отражения облучаемой поверхности; S - площадь облучаемой поверхности.
По мнению В.М.Чекмарева и соавт. (2000), коэффициент отражения при внутриполостной лазеротерапии можно не учитывать.
Для проведения лазеротерапии у детей мы последовательно использовали полупроводниковый инфракрасный лазер (аппарат "Узор" на арсениде галлия с магнитной насадкой, длина волны 0,89 мкм, мощность излучения в импульсе 4 Вт) и гелий-неоновый лазер (УЛФ-01, длина волны 0,63 мкм, мощность излучения на конце световода 8-10 мВт). Доза облучения подбиралась с учетом собственных экспериментальных исследований и клинических наблюдений.
С первых дней поступления в комплексное лечение детей с ГСЗ (осложненные формы острой гнойной деструктивной пневмонии, разлитого гнойного перитонита, панкреатит и др.) включали лазеротерапию. Последняя проводилась по методике, разработанной в клинике, и включала: чрескожное облуче

ние крови, наружное облучение очага воспаления инфракрасным лазером и внутриполостную лазеротерапию гелий-неоновым лазером.
Учитывая указание в литературе, что основным поглощающим компонентом при облучении биотканей инфракрасным лазером является кровь, а также способность излучения проникать в ткани на глубину 5-8 см, мы в последние 5 лет вместо внутривенного облучения крови как более инвазивного метода стали применять чрескожное облучение крови инфракрасным лазером в проекции крупных сосудов шеи или паховых областей на частоте 80 Гц. Время экспозиции определяется строго индивидуально в зависимости от возраста - от 3 до 5 мин. Всего 5-6 сеансов.
Одновременно в течение 5 дней проводится наружное облучение инфракрасным лазером в проекции очага воспаления в легких или других органах с 2-3 точек на частоте 1500 Гц с экспозицией на зону 1-2 мин.
При лечении острого панкреатита мы использовали различные варианты лазеротерапии с целью снятия воспалительной реакции, улучшения микроциркуляции в поджелудочной железе, активации метаболических процессов для ускорения регенерации. У детей с отечными формами острого панкреатита инфракрасное лазерное воздействие аппаратом "Узор" выполняли на область проекции поджелудочной железы (головка, тело и хвост). Время экспозиции выбирали строго индивидуально в зависимости от возраста, но не превышая 2-3 мин на одну область. Количество сеансов на курс от 5 до 8. В первые 5 дней процедуры проводили ежедневно, затем - через день.
У детей с деструктивными формами панкреатита, которым во время операции произведено дренирование области поджелудочной железы, после 3-5 сеансов облучения инфракрасным лазером переходили на внутриполостную лазеротерапию гелий-неоновым лазером. Облучение в этих случаях осуществлялось по кварцевому световоду через дренаж, подведенный интраоперационно к поджелудочной железе. Мощность на конце световода 9-10 мВт, экспозиция - 5-7 мин. Всего проводилось до 5-7 процедур.
При осложнениях разлитого гнойного перитонита (абсцессы после дренирования, инфильтраты, оментит, нагноение послеоперационных ран) также назначалась терапия инфракрасным лазером с облучением зон проекции очагов воспаления на переднюю брюшную стенку, послеоперационных ран и проводилось чрескожное облучение крови на область паховых сосудов.
При ОГО лазеротерапия проводилась ежедневно низкоинтенсивным лазером (аппарат "Узор") на частоте 80 Гц курсом 8-10 сеансов. В зависимости от локализации остеомиелити- ческого очага облучению подвергали локтевые, подколенные, бедренные сосуды, а также область поражения в 2-3 точках. Время экспозиции составляло 2-3 мин на одну зону.
Проведенные нами исследования показали выраженный клинический эффект от использования лазеротерапии. Применение ее способствовало более быстрому улучшению общего состояния, что проявлялось в уменьшении болевого синдрома, нормализации показателей гомеостаза, улучшении иммунного статуса, снижении числа послеоперационных осложнений, сокращении сроков облитерации бронхоплевральных свищей и сроков лечения больных.

Амиров Н.Б. // Фундаментальные исследования. – 2008. – № 5. – С. 14-16;

Проблема лечения ишемической болезни сердца (ИБС) продолжает оставаться актуальной, так как имеет большую социальную значимость из-за роста заболеваемости, увеличения инвалидизации и смертности трудоспособного населения от сердечно-сосудистых заболеваний. В то же время отмечается рост аллергических реакций на традиционные медикаментозные средства и развитие толерантности к ним. Именно поэтому внимание исследователей привлекает один из методов не медикаментозного лечения — лазеротерапия (ЛТ) . В лечении лазерным излучением (ЛИ) применяются световые потоки низкой интенсивности, не более 100 мВт/ см2, что сопоставимо с интенсивностью излучения Солнца, стоящего в зените, в ясный день. Такой вид ЛТ называют низкоинтенсивным лазерным излучением (НИЛИ). Применение ЛИ основано на взаимодействии света с биологическими тканями. Механизм взаимодействия НИЛИ с биологическим объектом представляется таким: при воздействии лазера на ткани возникают фотофизические и фотохимические реакции, связанные с поглощением световой энергии тканями и нарушением слабых молекулярных связей, также происходят восприятие и перенос эффекта лазерного излучения жидкими средами организма . Среди вторичных эффектов, представляющих собой адаптационные и компенсаторные реакции, необходимо отметить активацию метаболизма клеток и повышение их функциональной активности на фоне лазерной терапии. Эффект лазерной биостимуляции реализуется посредством акцепции световой энергии хроматофорными субстанциями в организме, усиления и трансформации полученного сигнала в клетке, активации ферментов и биосинтетических процессов в клетке. Усиливая энергетический обмен в клетках, ЛИ вызывает увеличение биосинтетической активности, проявляющейся в увеличении углеводов, белков, нуклеиновых кислот в сыворотки крови в условиях эксперимента и в клинике. Получены данные об избирательном действии ЛТ на процесс активации каталазы, участвующей в регуляции внутриклеточного содержания перекисей и в окислительных процессах энергообеспечения клетки, что ведет к повышению фосфорилирующей активности митохондрий клеток . Установлено, что НИЛИ может стимулировать активность важнейших биоэнергетических энзимов- дегидрогеназы и цитохромоксидазы, АТФ-азы и ацетилхолинэстеразы, кислой и щелочной фосфатазы и других ферментов клеточного метаболизма, что свидетельствует о наличии единых точек приложения энергии ЛИ, которыми являются мембраны и другие молекулярные структуры. НИЛИ способствует активации биоэнергетических процессов в клетках поверхности тела, митохондриях нервных клеток, а так же снижению уровня активности церулоплазмина, улучшению показателей активности сульфгидрильных групп. Отмечается снижение активности ЛДГ и изменение ее фракционного состава на фоне ЛТ. Отсутствие на энзимфореграммах фракций ЛДГ2 и ЛДГ5 на 7 сутки свидетельствуют о подавлении анаэробных и активации аэробных процессов. Под действием НИЛИ происходит снижение уровня мочевины и креатинина.

Лазерное излучение стимулирует деление клеток, что лежит в основе регенерации эпителиальных тканей, происходит ускорение пролиферации клеток. Под действием лазерной терапии отмечается повышение уровня палочкоядерных нейтрофилов (стимуляция лейкоцитоза); эозинофилов, базофилов, лимфоцитов (выброс зрелых клеток из костного мозга, селезенки, легких), снижение уровня моноцитов, сегментноядерных нейтрофилов (выход в ткани из циркуляторного русла) . НИЛИ непосредственно действует на кровь, наиболее к нему чувствительны именно сегментоядерные нейтрофилы. Снижение их в ограниченном объеме крови связано с двумя процессами: либо их разрушением, либо приобретением способности прилипать к поверхности в результате активации. Учитывая, что сегментоядерные нейтрофилы являются функционально гетерогенной популяцией клеток состоящей из клеток с различной степенью дифференцировки, логично предположить феномен «выбивания» субпопуляции наименее резистентных клеток под действием лазерной терапии. Не исключено, что эти изменения лежат в основе действия НИЛИ. Оставшиеся нейтрофилы характеризуются иным составом и реактивностью поверхностных гликопротеидных рецепторных детерминант, т.е. представлены другой, чем до облучения, субпопуляцией. Наблюдается утолщение слоя подмембранного актина. Размеры клеток и площадь их поверхности значительно уменьшаются, что приводит к выравниванию поверхностно-объемного отношения. Под действием лазерной терапии происходит укорочение фаз воспалительного процесса: в первую очередь, подавление экссудативной и инфильтративной реакции. Увеличивая скорость окислительно-восстановительных реакций, метаболических процессов, повышая утилизацию кислорода при пониженном парциальном давлении ЛИ ведет к снижению отека в тканях и купированию воспалительных процессов.

На фоне НИЛИ происходит активация микроциркуляции (МЦ) крови и повышение уровня трофического обеспечения тканей: показано стимулирующее действие на МЦ, включающего два процесса: собственно активизацию микроциркуляции, возникающую за счет увеличения локального кровотока, и более пролонгированный процесс, связанный с новообразованием капилляров. Сосудорасширяющий эффект проявляется в виде улучшения микроциркуляции в зоне поражения, это происходит за счет раскрытия новых капилляров и артериальных сосудов, ускорения кровотока в сосудах, улучшения реологических свойств крови. Отмечается уменьшение адренореактивности сосудов и их чувствительности к констрикторному влиянию биологически активных веществ. Происходит стимуляция эритропоэза, изменение электрического потенциала клеточных мембран эритроцитов, что приводит к увеличению их деформируемости и снижению вязкости цельной крови. При применении лазерной терапии происходит стабилизация проницаемости стенок капилляров, повышение утилизации кислорода, стимуляция внутриклеточного обмена . В эксперименте показано достоверное увеличение диаметра артериол, венул и лимфатических сосудов в миокарде после облучения лазером верхушки сердца. Выявлен адаптогенный эффект в виде улучшения функционирования системы МЦ под воздействием лазерной терапии на целостный организм . Реакция микроциркуляторного русла (МЦР) имеет двухфазный характер. В течение первых 2-3 сеансов лазерной терапии активно функционирует лишь артериальное звено МЦР, венозное и лимфатическое звенья МЦ включаются при последующих сеансах лазерной терапии. Становится понятным механизм, так называемого, обострения клинических проявлений заболевания после первых сеансов ЛТ: поскольку активация артериального колена капиллярного русла приводит к усилению экссудативных процессов с развитием периваскулярного отека, раздражением нервно-рефлекторного аппарата, клинически проявляющимся «обострением» заболевания. Активация венозного и лимфатического дренажей при последующих сеансах НИЛИ ведет к разрешению вышеописанных явлений. Отмечено на фоне НИЛИ усиление реакции клеточного и гуморального звена иммунитета, а также процессов фагоцитоза, нормализация неспецифической иммунной защиты, коррекция иммунного статуса. Увеличивается интенсивность деления иммунокомпетентных клеток и скорость образования иммуноглобулинов, повышается и восстанавливается активность Т- и В- лимфоцитов, мононуклеарных фагоцитов и нейтрофилов, гармонизируются отношения местного и гуморального иммунитета.

Отмечается гипохолестеринемический эффект лазерного излучения и стабилизация липидного бислоя клеточных мембран. Подчеркивается факт закономерного снижения в крови у больных ИБС уровня фосфолипидов (ФЛ), а также уменьшение содержания последних в эритроцитах и их мембранах. Наблюдается восстановление функциональных специфических кислородтранспортных свойств эритроцитов, в том числе за счет ускорения обновления структурного состава их мембран закономерной сменой фаз: I — сдвиги, обусловленные, преимущественно, стрессорным действием физического фактора; II — мобилизация адаптивных механизмов и восстановление мембранной структуры; III — модификация клеточной мембраны, обусловленная собственно квантовым воздействием. Гиполипидемический эффект у больных ИБС сохраняется в течение 6-12
месяцев.

Антикоагуляционный эффект ЛИ проявляется за счет удлинения тромбинового и фибринового времени, снижения уровня фибриногена, повышения содержания эндогенного гепарина, антитромбина III и фибринолитической активности крови, уменьшения степени и скорости агрегации тромбоцитов, нормализации степени их дезагрегации, а так же снижения степени агрегации эритроцитов (без существенного изменения показателей гематокрита). Под действием НИЛИ изменяется электрический потенциал клеточных мембран эритроцитов, что сопровождается увеличением их деформируемости и снижением вязкости цельной крови, а это способствует улучшению капиллярного кровотока.

Бактерицидный и бактериостатический эффект НИЛИ подтверждается увеличением фагоцитируемости бактерий, облученных лазерным излучением. Дезинтоксикационный эффект проявляется за счет конформационных изменений белковых и иммунных структур, под влиянием ЛТ происходит ускорение синтеза белка и РНК, т.е. активация анаболических процессов, а так же повышение парциального давления кислорода и интенсификация окислительно-восстановительных процессов .

Урежение пароксизмов нарушения ритма сердца в 6-8 раз, а количества наджелудочковых и желудочковых экстрасистол на 85% и более при применении лазерной терапии доказывает антиаритмический эффект этого метода лечения. При этом эффект 1-го курса НИЛИ сохраняется в течение 2 -6 месяцев, а при последующих — от 8 месяцев до нескольких лет. Положительный инотропный эффект ЛИ проявляется в достоверном уменьшении объемов левого желудочка, увеличении фракция выброса и скорости циркулярного укорочения волокон миокарда. Отмечается влияние лазерной терапии на центральную гемодинамику в виде достоверного снижения систолического и диастолического артериального давления: умеренного у больных с нормальным уровнем АД и до 15-20 мм. рт. ст. у больных артериальной гипертонией (АГ).

Имеются сведения о влиянии НИЛИ на эндокринную систему: указывается на повышение концентрации катехоламинов, серотонина и гистамина, активизацию гипофизарно-надпочечниковой системы, повышение уровня трийодтиронина. В экспериментах при облучении НИЛИ обнаружено повышение, а при нарастании времени воздействия — снижение уровня глюкозы крови. При анализе динамики изменений концентрации тестостерона выявлено ее повышение, а у больных с низким уровнем кортизола — отмечена лишь тенденция к его увеличению. Отмечено также влияние инфракрасного ЛИ на уровень адреналина и норадреналина.

Отмечен эффект стимуляции лимфообращения под влиянием НИЛИ: установлено усиление интенсивности лимфооттока, возрастание количества лимфатических сосудов, увеличение выхода лимфоцитов из депо в просвет функционирующих лимфатических сосудов под воздействием ЛИ красной области спектра малой интенсивности. Это объясняется влиянием НИЛИ на глобулярные белки, приводящее к уменьшению оптической плотности лимфы, и воздействием на процессы энергетического метаболизма в лимфоцитах. После лазерного воздействия идет более быстрая регенерация лимфатической системы, что является основой дренирующих, противоотечных эффектов лазерной терапии.

На фоне НИЛИ снижается уровень трипсинемии: значительно уменьшается число болевых приступов (вплоть до полного исчезновения), резко сокращается применение медикаментозных средств, отмечается повышение физической работоспособности и положительная динамика показателей ЭКГ.

Практика последних лет показала эффективность использования НИЛИ у больных ИБС, положителен опыт лечения ИБС со стенокардией, особенно выражен эффект у пациентов со стенокардией напряжения ФК II — III и при сочетании с диастолической дисфункцией левого желудочка (ДДЛЖ). НИЛИ дает возможность, в среднем, в 2,5 раза удлинить сроки терапевтической ремиссии ИБС, при этом лазерная терапия удлиняет сроки клинической ремиссии в 2-4 раза по сравнению с традиционным методом лечения Сочетание АГ и инфаркта миокарда в анамнезе предопределяет шестимесячный эффект лазерной терапии у большинства больных.

Вышеизложенное доказывает эффективность применения НИЛИ в комплексном лечении больных ИБС, в частности стенокардией напряжения II- III ФК. В тоже время сохраняется актуальность дальнейшего изучения механизмов влияния ЛИ на организм пациентов, страдающих ИБС. Остается ряд вопросов, на которые еще предстоит найти ответы, в частности — необходимость выявления наиболее эффективных комбинаций комплексного медикаментозно — лазерного лечения. Для этого, используя новейшие методы функциональной и лабораторной диагностики, проводится сравнение влияние лазерной терапии на динамику клинико-лабораторно — инструментальных исследований, в зависимости от комбинаций применяемых групп лекарственных средств традиционной медикаментозной терапии.

СПИСОК ЛИТЕРАТУРЫ:

  • Корочкин И. М. Применение низкоэнергетических лазеров в клинике внутренних болезней. Российский кардиологический журнал 2001; 5: 85-87.
  • Козлов В.И., Буйлин В.А. Лазеротерапия. М: Медицина; 1993.
  • Агов Б.С., Андреев Ю.А., Борисов А.В. и др.. О механизме терапевтического действия гелий-неонового лазера при ИБС. Клиническая медицина 1985; 10:102-107.
  • Кипшидзе Н.Н.. Чапидзе Г.Э., Корочкин Н.М. и др. Лечение ишемической болезни сердца гелий-неоновым лазером. Тбилиси; 1993.
  • Илларионов В.Е. Основы лазерной терапии. М.: Инотех-«Прогресс»; 1992.
  • Скобелкин О.К. (ред.) Применение низкоинтенсивных лазеров в клинической практике. М: Медицина; 1989.
  • Амиров Н.Б. Применение лазерного воздействия для лечения внутренних болезней. Каз. мед. журнал. 2001; 5: 369-372.

МЕМБРАННЫЕ МЕХАНИЗМЫ ФОТОБИОЛОГИЧЕСКОГО ДЕЙСТВИЯ
НИЗКОИНТЕНСИВНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Г.И. Клебанов

Кафедра биофизики
Российского государственного медицинского университета, Москва

Низкоинтенсивное лазерное излучение (НИЛИ), получившее в последнее десятилетие широкое применение в клинической практике, используется в медицине в двух основных направлениях:

1) при фотодинамической терапии (ФДТ) опухолей, где проявляется поражающий эффект НИЛИ

,

2) при лечении широкого круга различных воспалительных заболеваний лазеротерапией (ЛТ), где проявляется стимулирующий эффект НИЛИ

.

В основе механизма поражающего действия НИЛИ при ФДТ опухолей лежит инициация фотосенсибилизированных свободнорадикальных реакций (СРР)

, возникающих в результате взаимодействия квантов лазерного излучения с молекулами фотосенсибилизатора в присутствии кислорода . Что же касается лазеротерапии, то несмотря на широкое распространение этой лазерной технологии в клиниках России, стран СНГ, Израиля, Китая, Японии, стран Латинской Америки и др., механизм или механизмы стимулирующего действия НИЛИ далеки от своего понимания и рассматриваются в литературе только лишь на уровне гипотез , многие из которых противоречивы и умозрительны, не имеют экспериментальных доказательств наличия определённого хромофора, первичных реакций, приводящих в итоге к формированию физиологического ответа организма.

Ранее уже отмечалось, что НИЛИ весьма успешно применяется при лечении многих заболеваний

. Логично было бы предположить, что существует некое общее звено в патогенезе всех нозологических форм заболеваний, в терапии которых благотворно проявляется ЛТ. Это подразумевает наличие единого общего механизма действия НИЛИ применительно ко всем патологиям, а не множества разнообразных индивидуальных реакций для каждого конкретного заболевания. Наиболее вероятно, что таким связующим звеном является универсальный патологический процесс, а именно – воспаление, которое встречается во всех приведённых примерах применения ЛТ и либо играет роль ведущего патогенетического звена, либо носит реактивный характер.

Одной из существенных стадий в патогенезе воспалительного процесса является расстройство микроциркуляции, включая нарушение реологии крови. Воспалительный процесс в своём развитии проходит через смену фаз в цикле(ах) ишемии–реперфузии

с нарушением микроциркуляции. Любое воздействие, способное сократить продолжительность ишемической стадии, окажет благотворный эффект на последующее развитие заболевания.

Необходимо учитывать, что внедрение НИЛИ в клиническую практику идет преимущественно эмпирическим путем. Одно из самых коварных свойств НИЛИ – резкая зависимость величины и даже знака эффекта от дозы облучения и функционального состояния биологического объекта. Позитивное, стимулирующее действие проявляется, как правило, в узком интервале доз облучения, а затем исчезает или даже сменяется угнетающим действием [

21–23]. Так как до настоящего времени не объяснены механизмы терапевтического действия НИЛИ на организм человека и не определена природа эндогенного хромофора лазерного излучения , до сих пор нет научно обоснованного метода выбора доз облучения при НИЛИ.

Молекулярно-клеточные механизмы лечебного действия НИЛИ обсуждаются сейчас в литературе лишь на уровне гипотез. Основным моментом любой гипотезы фотобиологического действия лазерного излучения на организм является установление первичного хромофора-акцептора энергии поглощённого фотона ЛО и клетки-мишени действия НИЛИ. Дело в том, что взаимодействие лазерной энергии с хромофором основывается на первом законе фотохимии: действующим является только тот квант, который поглощается. Это означает, что для запуска всех последующих биохимических и физиологических ответов организма при ЛТ необходим хромофор, способный поглощать строго определённые кванты лазерной энергии, т.е. обладающий совпадением спектра поглощения с длиной волны излучения лазерного источника.

Наиболее широко в медицине и биологии в настоящее время используется гелий-неоновый лазер (ГНЛ), длина волны излучения которого составляет 632,8 нм, Применительно к этому источнику лазерной энергии в литературе высказывается предположение, что хромофорами в красной области спектра могут быть:

  • порфирины и его производные
,
  • молекулы ферментов-антиоксидантов: супероксид-дисмутаза (СОД), каталаза, церулоплазмин
  • ,
  • компоненты дыхательной цепи митохондрий: флавопротеины и цитохромы
  • ,
  • молекулярный кислород
  • .

    Что касается гипотез

    о фотобиологическом действии НИЛИ, то в литературе рассматривается несколько предположений о механизме действия лазерного излучения:

    1) реактивация металлосодерждащих ферментов-антиоксидантов

    ,

    2) гипотеза о взаимодействии НИЛИ с компонентами цепи транспорта электронов в митохондриях

    ,

    3) неспецифическое влияние на биополимеры

    ,

    4) фотовозбужденное образование синглетного кислорода

    ,

    5) неспецифическое влияние на структуру воды

    .

    Многие из существующих гипотез о механизмах терапевтического действия НИЛИ имеют недостатки, которые можно разделить на две группы. Во-первых, часть авторов рассматривают эффекты НИЛИ, без учета наличия хромофора. Очевидно, что поиск акцептора ЛИ является наиболее важным в проблеме действия НИЛИ. Во-вторых, некоторые предположения о механизмах действия лазерного излучения умозрительны, т.е. не подтверждены экспериментальными данными, или же эти данные противоречивы.

    Суть гипотезы, предложенной Т. Й. Кару, о взаимодействии лазерного излучения с компонентами цепей переноса электронов [

    13, 24 ] сводится к тому, что акцепторами НИЛИ в организме человека могут быть цитохромы а и а 3 , цитохромоксидаза. Механизм действия лазерного излучения в рамках этой гипотезы подразумевают такую последовательность событий:

    1. При гипоксии в условиях недостатка кислорода происходит восстановление ферментов-переносчиков в дыхательной цепи и падение трансмембранного потенциала митохондрий.

    2. ЛО приводит к реактивации этих ферментов (например, цитохромоксидазы), что восстанавливает поток электронов в дыхательной цепи и формирует трансмембранный потенциал митохондрий, т. е. возрастает трансмембранный потенциал в митохондриях, увеличивается продукция АТФ в клетках, активируется транспорт Са

    2+ . Увеличение продукции АТФ и концентрации ионов Са 2+ в клетке приводит к стимуляции внутриклеточных процессов .

    Данная гипотеза о механизме действия НИЛИ предлагает продуманную и вполне обоснованную цепь событий, которая, возможно, реальна. Авторы опираются на данные об увеличении пролиферации различных клеток, о лазер-индуцированном респираторном взрыве фагоцитов, наблюдаемом

    in vitro и т. п., то есть на фактах, которые могут быть следствием, а не причиной эффектов НИЛИ. Кроме того, с помощью этой гипотезы трудно объяснить дистанционность и пролонгированность эффектов НИЛИ, отмечаемых в клинике.

    Ранее на кафедре биофизики РГМУ была сформулирована концепция мембранного механизма стимулирующего действия НИЛИ

    . Ее основные положения можно представить следующим образом:

    1. Хромофорами лазерного излучения в красной области спектра являются эндогенные порфирины, которые способны поглощать свет в этой области спектра и хорошо известны как фотосенсибилизаторы. Содержание порфиринов в организме увеличивается при многих заболеваниях и патологических состояниях человека. Мишенями лазерной энергии являются клетки, в частности лейкоциты, и липопротеины крови, содержащие порфирины.

    2. Порфирины, поглощая световую энергию НИЛИ, индуцируют фотосенсибилизированные свободнорадикальные реакции, приводящие к инициации перекисного окисления липидов (ПОЛ) в мембранах лейкоцитов и в липопротеинах с образованием первичных и вторичных продуктов ПОЛ. Накопление в мембранах продуктов ПОЛ, в частности гидроперекисей, способствует увеличению ионной проницаемости, в том числе и для ионов Са

    2+ .

    3. Увеличение содержания ионов Са

    2+ в цитозоле лейкоцитов запускает Са 2+ -зависимые процессы, приводящие к праймингу клеток, что выражается в повышении уровня функциональной активности клетки, к повышенной продукции различных биологически активных соединений (оксид азота, супероксид-анион - радикал кислорода, гипохлорит-анион и др.). Некоторые из них обладают бактерицидным эффектом, другие способны влиять на микроциркуляцию крови . Например, оксид азота является предшественником так называемого Endothelium Derived Relaxing Factor (EDRF) фактора, расслабляющего эндотелий сосудов, который приводит к вазодилятации последних и к улучшению микроциркуляции, что является основой для большинства благотворных клинических эффектов ЛТ [ 5–8].

    Поиск новых средств и методов лечения дерматозов обусловлен непереносимостью многих лекарственных препаратов, развитием аллергических реакций различной степени тяжести, побочным действием препаратов, низкой терапевтической эффективностью общепринятых способов лечения, необходимостью совершенствовать и оптимизировать существующие методики. В связи с этим изучение возможностей различных физических факторов — ультразвука, криотерапии, фототерапии, магнитного и лазерного излучения — является важной практической задачей современной дерматологии. В данной статье описаны основные физические и терапевтические свойства лазерного излучения, а также спектр его применения в дерматологии и косметологии.

    Термин «лазер» представляет собой аббревиатуру от английского Light Amplification by Simulated Emission of Radiation — усиление света с помощью индуцированного излучения.

    Лазер (или оптический квантовый генератор) — это техническое устройство, продуцирующее электромагнитное излучение в виде направленного сфокусированного высококогерентного монохроматического пучка.

    Физические свойства лазерного излучения

    Когерентность излучения лазеров определяет постоянство фазы и частоты (длины волны) на протяжении работы лазера, т. е. это свойство, обусловливающее исключительную способность к концентрации световой энергии по разным параметрам: в спектре — очень узкая спектральная линия излучения; во времени — возможность получения сверхкоротких импульсов света; в пространстве и по направлению — возможность получения направленного пучка с минимальной расходимостью и фокусированием всего излучения в малой области с размерами порядка длины волны. Все эти параметры позволяют осуществлять локальные воздействия, вплоть до клеточного уровня, а также эффективно передавать излучение по волоконным световодам для дистанционного воздействия.

    Расходимость лазерного излучения — это плоский или телесный угол, характеризующий ширину диаграммы направленности излучения в дальней зоне по заданному уровню распределения энергии или мощности лазерного излучения, определяемому по отношению к его максимальному значению.

    Монохроматичность — спектральная ширина излучения и характерная длина волны для каждого источника излучения.

    Поляризация — проявление поперечности электромагнитной волны, т. е. сохранение постоянного ортогонального положения взаимно перпендикулярных векторов напряженности электрического и магнитного полей по отношению к скорости распространения волнового фронта.

    Высокая интенсивность лазерного излучения позволяет сконцентрировать в малом объеме значительную энергию, что вызывает многофотонные и другие нелинейные процессы в биологической среде, локальный тепловой нагрев, быстрое испарение, гидродинамический взрыв.

    К энергетическим параметрам лазеров относятся: мощность излучения, измеряется в ваттах (Вт); энергия излучения, измеряется в джоулях (Дж); длина волны, измеряется в микрометрах (мкм); доза излучения (или плотность энергии) — Дж/смІ.

    Лазерное излучение по своим свойствам отличается от других видов электромагнитного излучения (рентгеновское и высокочастотное γ-излучение), используемых в медицине. БСльшая часть лазерных источников излучает в ультрафиолетовом или инфракрасном диапазонах электромагнитных волн, при этом основное отличие лазерного излучения от света обычных тепловых источников заключается в его пространственной и временнСй когерентности. Благодаря этому энергию лазерного излучения относительно легко передавать на значительное расстояние и концентрировать в малых объемах или в небольших временны′х интервалах.

    Лазерное излучение, воздействующее на биологический объект с лечебной целью, является внешним физическим фактором. При поглощении энергии лазерного излучения биообъектом все процессы, происходящие при этом, подчиняются физическим законам (отражение, поглощение, рассеивание). Степень отражения, рассеивания и поглощения зависит от состояния кожных покровов: влажности, пигментации, кровенаполнения и отечности кожи и подлежащих тканей.

    Глубина проникновения лазерного излучения зависит от длины волны, уменьшаясь от длинноволнового к коротковолновому излучению. Таким образом, инфракрасное (0,76-1,5 мкм) и видимое излучения обладают наибольшей проникающей способностью (3-5-7 см), а ультрафиолетовое и другие длинноволновые излучения сильно поглощаются эпидермисом и поэтому проникают в ткани на небольшую глубину (1-1,5 см).

    Применение лазера в медицине:

    • деструктивное воздействие на биологические структуры и процессы - коагуляция (в офтальмологии, онкологии, дерматовенерологии) и рассечение тканей (в хирургии);
    • биостимуляция (в физиотерапии);
    • диагностика - изучение биологических структур и процессов (допплеровская спектроскопия, проточная цитофотометрия, голография, лазерная микроскопия и др.).

    Применение лазеров в дерматологии

    В дерматологии используется лазерное излучение двух типов: низкоинтенсивное — в качестве лазерной терапии и высокоинтенсивное — в лазерной хирургии.

    По типу активной среды лазеры делятся:

    • на твердотельные (рубиновый, неодимовый);
    • газовые - HE-NE (гелий-неоновый), СО 2 ;
    • полупроводниковые (или диодные);
    • жидкостные (на неорганических или органических красителях);
    • лазеры на парах металлов (самые распространенные: на парах меди или золота).

    По типу излучения существуют ультрафиолетовые, видимые и инфракрасные лазеры. При этом и полупроводниковые лазеры, и лазеры на парах металлов могут быть как низкоинтенсивными (для терапии), так и высокоинтенсивными (для хирургии).

    Низкоинтенсивное лазерное излучение (НИЛИ) используется для лазерной терапии кожных заболеваний. Действие НИЛИ заключается в активации ферментов мембран клеток, увеличении электрического заряда белков и фосфолипидов, стабилизации мембранных и свободных липидов, увеличении оксигемоглобина в организме, активации процессов тканевого дыхания, повышении синтеза цАМФ, стабилизации окислительного фосфорилирования липидов (снижении свободно-радикальных комплексов).

    При воздействии НИЛИ на биоткань наблюдаются следующие основные эффекты:

    • противовоспалительный,
    • антиоксидантный,
    • обезболивающий,
    • иммуномодулирующий.

    Выраженный терапевтический эффект при лечении различных по этиологии и патогенезу заболеваний человека предполагает существование биостимулирующего механизма действия лазерного излучения небольшой мощности. Исследователи считают реакцию иммунной системы на лазерное излучение одним из важнейших факторов в механизме лазерной терапии, что, по их мнению, является пусковым моментом в реакции всего организма.

    Противовоспалительный эффект

    При воздействии НИЛИ на кожу наблюдается противовоспалительный эффект: активизируется микроциркуляция в тканях, расширяются сосуды, увеличивается число функционирующих капилляров и формируются коллатерали, повышается кровоток в тканях, нормализуется проницаемость клеточных мембран и осмотическое давление в клетках, повышается синтез цАМФ. Все эти процессы приводят к уменьшению интерстициального отека, гиперемии, шелушения, зуда, наблюдается отграниченность патологического процесса (очага), стихание острых воспалительных проявлений в течение 2-3 дней. Воздействие НИЛИ на область воспаления в коже, помимо противовоспалительного эффекта, обеспечивает антибактериальное и фунгицидное действие. По литературным данным, количество бактерий и грибковой флоры снижается на 50% в течение 3-5 мин лазерного облучения патологической зоны.

    С учетом противовоспалительного и антибактериального эффекта НИЛИ при местном воздействии на кожу лазеры применяются в лечении таких заболеваний, как пиодермии (фолликулиты, фурункулы, импетиго, угревая болезнь, стрептостафилодермии, шанкриформная пиодермия), трофические язвы, аллергодерматозы (истинная экзема, микробная экзема, атопический дерматит, крапивница). Также НИЛИ используется при дерматитах, ожогах, псориазе, красном плоском лишае, склеродермии, витилиго, заболеваниях слизистой оболочки полости рта и красной каймы губ (буллезный пемфигоид, многоформная экссудативная эритема, хейлиты, стоматиты и т. д.).

    Антиоксидантный эффект

    При воздействии НИЛИ наблюдается антиоксидантный эффект, который обеспечивается за счет снижения выработки свободнорадикальных комплексов, когда происходит предохранение клеточных и субклеточных компонентов от повреждения, а также обеспечение целостности органелл. Данный эффект связан с патогенезом значительного количества кожных болезней и механизмом старения кожи. Как показали исследования Г. Е. Брилль и соавторов, НИЛИ активизирует ферментативное звено антиоксидантной защиты в эритроцитах и несколько ослабляет стимулирующее влияние стресса на перекисное окисление липидов в эритроцитах.

    Антиоксидантный эффект НИЛИ используется при лечении аллергодерматозов, хронических заболеваний кожи и при проведении омолаживающих процедур.

    Обезболивающий эффект

    Обезболивающий эффект при воздействии НИЛИ осуществляется за счет блокады болевой чувствительности по нервным волокнам. Одновременно наблюдается легкий седативный эффект. Также обезболивающий эффект обеспечивается за счет снижения чувствительности рецепторного аппарата кожи, повышения порога болевой чувствительности, стимуляции деятельности опиатных рецепторов.

    Совокупность обезболивающего и легкого седативного эффектов играет важную роль, так как при различных кожных заболеваниях зуд (как извращенное проявление боли) является основным симптомом, нарушающим качество жизни больного. Эти эффекты позволяют применять НИЛИ при аллергодерматозах, зудящих дерматозах, красном плоском лишае.

    Иммуномодулирующий эффект

    В последнее время доказано, что при различных кожных заболеваниях наблюдается дисбаланс иммунной системы. Как при местном облучении кожи, так и при внутривенном облучении крови НИЛИ оказывает иммуномодулирующий эффект — устраняется дисглобулинемия, повышается активность фагоцитоза, происходит нормализация апоптоза и активация нейроэндокринной системы.

    Некоторые методики с использованием НИЛИ

    Аллергодерматозы (атопический дерматит, хроническая экзема, рецидивирующая крапивница). Проводят облучение НИЛИ венозной крови инвазивным или неинвазивным методом, а также локальную лазеротерапию.

    Инвазивный метод заключается в венопункции (венесекции) в области лучевой вены, заборе крови в количестве 500-750 мл, которая пропускается через лазерный луч, после чего следует реинфузия облученной крови. Процедура проводится однократно, 1 раз в полгода с экспозицией 30 мин.

    Неинвазивный метод заключается в подведении лазерного луча в проекцию лучевой вены. В это время больной сжимает и разжимает кулак. В результате в течение 30 мин облучается 70% крови. Метод безболезненный, не требует специальных условий, предполагает использование как непрерывного, так и импульсного лазерного излучения — от 5 до 10 000 Гц. Установлено, что колебания в 10 000 Гц соотносятся с колебаниями на поверхности мембран клеток.

    Облучение крови производится только гелий-неоновым лазером, длиной волны 633 нм, мощностью 60,0 мВт и полупроводниковыми лазерами с длиной волны 0,63 мкм.

    С. Р. Утц и соавторы для лечения тяжелых форм атопического дерматита у детей, применив неинвазивный метод, использовали лазерные головки с отражающей поверхностью; на кожу в месте облучения наносили иммерсионное масло, а головкой создавали компрессию. Зоной облучения служила большая подкожная вена на уровне медиальной лодыжки.

    Перечисленные методы дополняют локальной лазеротерапией. Рекомендуемые максимальные размеры площадей для проведения лазерной терапии в течение одного сеанса: для кожи лица и слизистых оболочек полости носа, рта и губ — 10 смІ, для остальных участков кожи — 20 смІ. При симметричных поражениях целесообразно в течение одного сеанса последовательно работать на двух контралатеральных зонах с равным разделением рекомендуемой площади.

    При работе на коже лица категорически запрещается направлять луч на глаза и веки. Отсюда следует, что излучение гелий-неонового лазера не следует применять для лечения заболеваний кожи век.

    Излучение гелий-неонового лазера применяют преимущественно в дистанционном режиме. Для лечения заболеваний кожи с площадью поражения свыше 1-2 смІ пятно лазерного луча перемещают со скоростью 1 см/с по всей выбранной для сеанса площади так, чтобы она вся была равномерно подвергнута облучению. Целесообразен спиральный вектор сканирования — от центра к периферии.

    При атопическом дерматите облучение проводят по полям с захватом всей пораженной поверхности кожи по конфигурации патологического участка от периферии к центру, с облучением здоровых тканей в пределах 1-1,5 см или сканированием лазерным лучом со скоростью 1 см/с. Доза облучения на сеанс составляет 1-30 Дж/смІ, длительность сеанса — до 25 мин, курс из 5-15 сеансов. Лечение можно проводить на фоне антиоксидантной терапии и витаминотерапии.

    При облучении венозной крови с помощью НИЛИ у больных с аллергодерматозами мы добиваемся всех вышеупомянутых эффектов лазерного излучения, что способствует быстрейшему выздоровлению и снижению случаев рецидивов.

    Псориаз. При псориазе используется облучение крови, применяется лазерная индуктотермия надпочечников, а также локальное воздействие на бляшки. Проводится обычно инфракрасным (0,89 нм, 3-5 Вт) или гелий-неоновым лазерами (633 нм, 60 мВт).

    Лазерная индуктотермия надпочечников проводится контактно на кожу в проекции надпочечников, от 2 до 5 мин, в зависимости от веса больного, курс — 15-25 сеансов. Лазерное облучение проводят в стационарной и регрессирующей стадиях псориаза, обеспечивая выработку эндогенного кортизола организмом больного, что приводит к разрешению псориатических элементов и позволяет добиться выраженного противовоспалительного эффекта.

    Показана эффективность лазерной терапии при псориатическом артрите. В ходе лечения облучают пораженные суставы, иногда местную терапию сочетают с облучением надпочечников. После двух сеансов отмечается обострение, которое становится менее интенсивным к 5-му сеансу, к 7-10-му сеансам состояние стабилизируется. Курс лазеротерапии состоит из 14-15 сеансов.

    Принципиально новым направлением в терапии псориаза и витилиго является разработка и клиническое применение эксимерного лазера на основе хлорида ксенона, который представляет собой источник узкополосного ультрафиолетового (UVB) излучения длиной 308 нм. Поскольку энергия направляется только на область бляшки и здоровая кожа не подвергается воздействию, очаги поражения можно облучать с помощью излучения с высокой плотностью энергии (от 100 мДж/смІ и выше), что усиливает антипсориатическое действие. Избежать вапоризации и термических поражений позволяют короткие импульсы до 30 нс. Узкий монохроматический спектр излучения с длиной 308 нм действует только на один хромофор, вызывая гибель мутагенных ядер кератиноцитов и активируя Т-клеточный апоптоз. Ограничивают внедрение в широкую клиническую практику эксимерных лазерных систем их высокая стоимость, отсутствие методического обеспечения, недостаточная изученность отдаленных результатов, сложности, связанные с расчетом глубины воздействия по мере истончения бляшек в ходе терапии.

    Красный плоский лишай (КПЛ). При КПЛ обычно используется методика местного облучения высыпаний контактным способом, скользящими движениями от периферии к центру. Экспозиция — от 2 до 5 мин, в зависимости от площади поражения. Суммарная доза не должна превышать 60 Дж/смІ. Такие процедуры обеспечивают противовоспалительный и противозудный эффект. Для рассасывания бляшек экспозицию увеличивают до 15 мин.

    При локализации КПЛ на волосистой части головы лазерное облучение проводится с экспозицией до 5 мин. Кроме вышеупомянутых эффектов, достигается стимуляция роста волос в зоне облучения.

    При применении данных методов используется инфракрасное, гелий-неоновое и на парах меди лазерное излучение. При КПЛ также может проводиться облучение венозной крови.

    Пиодермии. При гнойничковых заболеваниях кожи также применяется методика облучения НИЛИ венозной крови и методика местного облучения контактным способом, скользящими движениями с экспозицией до 5 мин.

    Данные методики позволяют достичь противовоспалительного, антибактериального (бактериостатического и бактериоцидного) эффектов, а также стимуляции репаративных процессов.

    При рожистом воспалении применяют НИЛИ контактно, дистанционно и внутривенно. При использовании лазерной терапии на 2-4 дня раньше нормализуется температура тела, на 4-7 сут быстрее наступает регрессия локальных проявлений, на 2-5 сут быстрее происходят очищение и все процессы репарации. Выявлено повышение фибринолитической активности, содержания Т- и В-лимфоцитов и их функциональной активности, улучшение микроциркуляции. Рецидивы при традиционном лечении составляют 43%, при применении НИЛИ — 2,7%.

    Васкулиты. Для лечения васкулитов кожи В. В. Кулага и соавторы предлагают инвазивный метод НИЛИ. Из вены больного берут 3-5 мл крови, помещают ее в кювету и подвергают облучению гелий-неоновым лазером, мощностью 25 мВт, в течение 2-3 мин, после чего 1-2 мл облученной крови вводят в очаги поражения. За один сеанс делают 2-4 инъекции, в течение недели — 2-3 сеанса, курс лечения состоит из 10-12 сеансов. Другие авторы рекомендуют внутрисосудистое облучение крови энергией гелий-неонового лазера мощностью 1-2 мВт длительностью 10-30 мин, сеансы проводят ежедневно или через день, курс состоит из 10-30 сеансов.

    Склеродермия. Ж. Ж. Рапопорт и соавторы предлагают проводить сеансы лазерной терапии с помощью гелий-неонового лазера через световод, введенный по игле на границе здоровой и пораженной кожи. Сеанс длится 10 мин, доза — 4 Дж/смІ. Другая методика заключается в наружном облучении очагов поражения излучением мощностью 3-4 мВт/смІ с экспозицией 5-10 мин, курс — 30 сеансов.

    Вирусные дерматозы. Достаточно успешно лазерная терапия применяется при опоясывающем лишае. А. А. Каламкарян и соавторы предложили дистанционное посегментарное облучение очагов гелий-неоновым лазером мощностью 20-25 мВт, при котором луч лазера перемещается по ходу нервных стволов и на места высыпаний. Сеансы проводятся ежедневно, длятся от 3 до 20 дней.

    Витилиго. Для лечения витилиго применяют излучение гелий-неонового лазера и наружные фотосенсибилизаторы, например анилиновые красители. Непосредственно перед процедурой на очаги наносят раствор красителя (бриллиантовый зеленый, метиленовый синий, фукорцин), после чего проводят локальное облучение расфокусированным лазерным лучом мощностью 1-1,5 мВт/смІ. Продолжительность сеанса оставляет 3-5 мин, ежедневно, курс 15-20 сеансов, повторные курсы возможны через 3-4 нед.

    Облысение. Применение лазера на парах меди в эксперименте, проводившемся на коже, по данным электронной микроскопии, выявило выраженное усиление пролиферативной и метаболической активности в эпидермоцитах, в том числе в волосяных фолликулах. Отмечено расширение микрососудов сосочкового слоя дермы. В соединительной ткани, в частности в фибробластах, обнаружено относительное нарастание объема внутриклеточных структур, связанных с синтезом коллагена. Зарегистрировано возрастание активности в нейтрофилах, эозинофилах, макрофагах и тучных клетках. Перечисленные изменения лежат в основе лечения облысения. Уже после 4-5-го сеанса лазерной терапии отмечается рост пушковых волос на голове.

    Описанная выше техника лечения витилиго применяется также для лечения очагового облысения.

    Рубцы. С помощью световой и электронной микроскопии изучались изменения, которые происходят в кожных рубцах в результате применения лазерного излучения у человека. Так, применение ультрафиолетового и гелий-неонового НИЛИ не вызывало существенных изменений вследствие неглубокого проникновения лазерной энергии. После использования излучения инфракрасного лазера растет число резорбирующих коллаген фибробластов, при этом коллагеновые волокна истончаются, несколько снижается число тучных клеток и выделение секреторных гранул. В некоторой степени увеличивается относительная объемная доля микрососудов.

    При использовании НИЛИ для профилактики грубого рубцевания кожных хирургических ран выявлено снижение содержания активных фибробластов и, следовательно, коллагена.

    Использование высокоинтенсивного лазерного излучения (ВИЛИ)

    ВИЛИ получают с помощью СО 2 , Er:YAG-лазера и аргонового лазера. СО 2 -лазер в основном используется для лазерного удаления (деструкции) папиллом, бородавок, кондилом, рубцов и дермабразии; Er:YAG-лазер — для лазерного омолаживания кожи. Существуют также комбинированные СО 2 -, Er:YAG-лазерные системы.

    Лазерная деструкция. ВИЛИ применяется в дерматологии и косметологии для деструкции новообразований, удаления ногтевых пластинок, а также для лазерной вапоризации папиллом, кондилом, невусов и бородавок. При этом мощность излучения может составлять от 1,0 до 10,0 Вт.

    В клинической практике применяют неодимовый и СО 2 -лазеры. При применении СО 2 -лазера меньше повреждаются окружающие ткани, а неодимовый лазер обладает лучшим гемостатическим эффектом. Помимо того, что лазер физически удаляет поражения, исследования показали токсическое действие лазерного излучения на вирус папилломы человека (ВПЧ). Путем изменения мощности лазера, размера пятна и времени экспозиции можно контролировать глубину коагуляции. Для выполнения процедур необходим хорошо обученный персонал. При использовании лазеров требуется обезболивание, однако местной или локальной анестезии оказывается достаточно, что позволяет проводить процедуры в амбулаторных условиях. Однако 85% больных все равно отмечают легкую болезненность. Метод имеет примерно такую же эффективность, как электрокоагуляция, но менее болезнен, вызывает меньше послеоперационных побочных эффектов, включая менее выраженное рубцевание, дает хороший косметический эффект. Эффективность метода достигает 80-90% при терапии остроконечных кондилом.

    Лазеротерапию можно успешно применять для лечения распространенных, устойчивых к другой терапии бородавок. При этом проводится несколько курсов лечения, что позволяет повысить процент излечения с 55 (после 1 курса) до 85%. Однако в особых случаях при многолетнем неэффективном лечении различными методами эффективность лазеротерапии оказывается не столь высока. Даже после многократных курсов лечения она позволяет прекратить рецидивирование примерно лишь у 40% больных. Тщательные исследования показали, что столь невысокий показатель связан с тем, что СО2-лазер неэффективен для устранения генома вируса из поражений, устойчивых к лечению (по данным ПЦР молекулярно-биологическое излечение наступает у 26% больных).

    Лазерную терапию можно применять для лечения генитальных бородавок у подростков. Показана высокая эффективность и безопасность метода при лечении данного контингента пациентов, в большинстве случаев для излечения достаточно 1 процедуры.

    Для уменьшения количества рецидивов остроконечных кондилом (частота рецидивов от 4 до 30%) рекомендуют применять после процедуры удаления лазерное «очищение» окружающей слизистой. При использовании методики «очищения» часто наблюдаются дискомфорт и болезненность. При наличии больших кондилом перед лазеротерапией рекомендуется их предварительное разрушение, в частности электрокаутером. Это, в свою очередь, позволяет избежать побочных эффектов, связанных с электрорезекцией. Возможной причиной рецидивов является сохранение генома ВПЧ в коже рядом с участками обработки, что было выявлено как после применения лазера, так и после электрохирургического иссечения.

    Наиболее тяжелыми побочными эффектами лазерной деструкции являются: изъязвления, кровотечение, вторичное инфицирование раны. После лазерного иссечения бородавок осложнения развиваются у 12% больных.

    Как и при использовании электрохирургических методов, происходит выделение ДНК ВПЧ с дымом, что требует соответствующих мер предосторожности во избежание заражения носоглотки врача. В то же время в некоторых исследованиях показано отсутствие различий в частоте выявления бородавок у хирургов, занимающихся лазеротерапией, в сравнении с другими группами населения. Не обнаружено существенных различий в частоте появления бородавок и между группами врачей, применявших и не применявших защитные средства и эвакуаторы дыма. Тем не менее, поскольку типы ВПЧ, вызывающие генитальные бородавки, способны инфицировать слизистую верхних дыхательных путей, лазерный дым, содержащий эти вирусы, опасен для хирургов, производящих вапоризацию.

    Широкому распространению методов лазерной деструкции препятствует высокая стоимость качественного оборудования и необходимость подготовки опытного персонала.

    Лазерная эпиляция. В основе лазерной эпиляции (термолазерной эпиляции) лежит принцип селективного фототермолиза. Световая волна со специально подобранными характеристиками проходит через кожу и, не повреждая ее, избирательно поглощается меланином, содержащимся в больших количествах в волосяных луковицах. Это вызывает нагрев волосяных луковиц (фолликулов) с последующей их коагуляцией и разрушением. Для разрушения фолликулов требуется, чтобы к корню волоса было подведено необходимое количество световой энергии. Для эпиляции используется излучение мощностью от 10,0 до 60,0 Вт. Так как волосы находятся в разных стадиях роста, то для полной эпиляции требуется несколько процедур. Они проводятся на любом участке тела, бесконтактно, не менее 3 раз с интервалом 1-3 мес.

    Основными преимуществами лазерной эпиляции являются комфортность и безболезненность процедур, достижение стойкого и долговременного результата, безопасность, высокая скорость обработки (одним импульсом одновременно удаляются сотни фолликулов), неинвазивность, бесконтактность. Таким образом, этот метод на сегодня представляет собой самый эффективный и наиболее экономически выгодный способ эпиляции. Существенно снижает эффективность процедур длительное пребывание на солнце и загар (естественный или искусственный).

    Лазерная дермабразия. Дермабразия — это снятие верхних слоев эпидермиса. После воздействия остается достаточно мягкий и безболезненный лазерный струп. В течение 1 мес после процедуры под струпом формируется новая молодая кожа. Применяется лазерная дермабразия для омолаживания кожи лица и шеи, сведения татуировок, шлифовки рубцов, а также в качестве лечения постакне у больных тяжелыми формами угревой болезни.

    Лазерное омоложение кожи. С помощью лазера проводится точная и поверхностная абляция с минимальным тепловым повреждением и без кровотечений, что приводит к быстрому заживлению и исчезновению эритемы. Для этого используют в основном Er:YAG-лазеры, которые хороши для поверхностного омоложения кожи (в том числе у темнокожих пациентов). Аппараты позволяют проводить быстрое и равномерное сканирование кожи, а также выравнивать цветовые границы после обработки CO 2 -лазером.

    Противопоказания к применению лазерной терапии

    Лазерную терапию применяют с осторожностью у больных с онкологическими заболеваниями, сахарным диабетом, гипертонической болезнью и тиреотоксикозом в стадии декомпенсации, тяжелыми нарушениями сердечного ритма, стенокардией напряжения 3-4-го функциональных классов и недостаточностью кровообращения 2-3-й стадии, заболеваниями крови, угрозой кровотечения, активной формой туберкулеза, психическими болезнями, а также при индивидуальной непереносимости.

    Таким образом, лазерное излучение является мощным вспомогательным средством в лечении больных различными дерматологическими заболеваниями и методом выбора в хирургической дерматологии и косметологии.

    Литература
    1. Богданов С. Л. и др. Лазерная терапия в косметологии: Метод. рекомендации. - СПб., 1995.
    2. Брилль Г. Е. и др. Физическая медицина. - 1994. - № 4, 2. - С. 14-15.
    3. Графчикова Л. В. и др. Физическая медицина. -1994. - № 4, 2. - С. 62.
    4. Егоров B. E. и др. Материалы Международной конференции Клиническое и экспериментальное применение новых лазерных технологий. Казань. - 1995. - C.181-182 .
    5. Каламкарян А. Л. и др. Вестн. дерматол. и венерол. - 1990. - № 8. - С. 4-11.
    6. Капкаев P. A., Ибрагимов А. Ф. Актуальные вопросы лазерной медицины и операционной эндоскопии: Материалы 3-й Международной конференции. - Видное, 1994. - С. 93-94.
    7. Корепанов В. И., Федоров С. М., Шульга В. А. Применение низкоинтенсивного лазерного излучения в дерматологии: Практическое руководство. - М., 1996.
    8. Кулага В. В., Шварева Т. И. Вестн. дерматол. и венерол. - 1991. - № 6. - С. 42-46.
    9. Мандель A. Н. Эффективность лазеротерапии больных очаговой склеродермией и ее влияние на показатели серотонина, дофамина, норадреналина и уроканиновой кислоты: Автореф. дис. ... канд. мед. наук. -М., 1982.
    10. Мандель A. Н. Эффективность лазерной фотохимиотерапии у больных хроническими дерматозами: Дис. ... докт. мед. наук. - М. 1989. - С. 364.
    11. Михайлова И. В., Ракчеев А. П. Вестн. дерматол. - 1994. - № 4. - С. 50.
    12. Петрищева Н. Н., Соколовский Е. В. Применение полупроводниковых лазеров в дерматологии и косметологии: Пособие для врачей. - СПб.: СПбГМУ, 2001.
    13. Плетнев С. Д. Лазеры в клинической медицине; Руководство для врачей. - М.: Медицина, 1996.
    14. Ракчеев А. П. Перспективы применения лазеров в дерматологии // Всесоюзная конференция по применению лазеров в медицине. - М., 1984.
    15. Рапопорт Ж. Ж. и др. Применение лазеров в хирургии и медицине. - Самарканд, 1988. - Ч. 1. - С. 91-93.
    16. Родионов В. Г. Влияние лазерного излучения на капилляротоксические факторы крови больных аллергическими васкулитами кожи // Всесоюзная конференция по применению лазеров в медицине. - М., 1984.
    17. Утц С. Р. и др. Вестн. дерматол. и венерол. - 1991. - № 11. - С. 11.
    18. Халмуратов A. M. Актуальные вопросы лазерной медицины и операционной эндоскопии // Материалы 3-й Международной конференции. - Видное, 1994. - С. 482-483.
    19. Шульга В. А., Федоров C. M. Информационный лист по проблеме "Дерматология и венерология". - М.: ЦНИКВИ, 1993.
    20. Bergbrant I. M., Samuelsson L., Olofsson S. et al. Acta Derm Venerol. 1994; 74(5): 393-395.
    21. Bonis B., Kemeny L., Dobozy A. et al. 308 nm eximer laser for psoriasis. Lancet. 1997; 3509:1522.
    22. Damianov N., Mincheva A., de Villiers E. M. Khirurgia. 1993; 46(4): 24-27.
    23. Handley J. M., Dinsmore W. J. Eur Acad Dermatol Venerol. 1994; 3(3): 251-265.
    24. Gerber W., Arheilger B., Ha T.A. et al. Ultraviolet B 308-nm eximer laser treatment of psoriasis: a new phototherapeutic approach. British J of Dermatol. 2003; 149: 1250 -1258.
    25. Gloster H. M., Roenigk R. K. J Amer Acad Dermatol. 1995; 32(3): 436 - 441.
    26. Lassus J., Happonen H. P., Niemi K. M. et al. Sex Transm Dis. 1994; 21(6): 297-302.
    27. Novak Z., Bonis B., Baltas E. et al. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in including T cell apoptosis than a narrow-band ultraviolet B. J Photochem and Photobiol. 2002; 67: 32-38.
    28. Petersen C. S., Menne T. Acta Derm Venerol. 1993; 73(6): 465-466 .
    29. Schneede P., Muschter R. Urologe. 1999; 33(4): 299-302.
    30. Schoenfeld A., Ziv E., Levavi. H. et al. Gynecol & Obstet Invest. 1995; 40(1): 46-51 .
    31. Smyczek-Garsya B., Menton M., Oettling G. et al. Zentralbl Gynakol. 1993; 115(9): 400-403.
    32. Townsend D. E., Smith L. H., Kinney W. K. J Reprod Med. 1993; 38(5): 362-364.
    33. Vasileva P., Ignatov V., Kiriazov E. Akush Ginekol. 1994; 33(2): 23-24.
    34. Wozniak J., Szczepanska M., Opala T. et al. Gin Pol. 1995; 66(2): 103-107.

    А. М. Соловьев, кандидат медицинских наук, доцент
    К. Б. Ольховская, кандидат медицинских наук

    Лазерное излучение в медицине представляет собой вынужденную или стимулированную волну оптического диапазона длиной от 10 нм до 1000 мкм (1 мкм=1000 нм).

    Лазерное излучение имеет :
    - когерентность - согласованное протекание во времени нескольких волновых процессов одной частоты;
    - монохроматичность - одна длина волны;
    - поляризованность - упорядоченность ориентации вектора напряженности электромагнитного поля волны в плоскости, перпендикулярной ее распространению.

    Физическое и физиологическое действие лазерного излучения

    Лазерное излучение (ЛИ) обладает фотобиологической активностью. Биофизические и биохимические реакции тканей на ЛИ различны и зависят от диапазона, длины волны и энергии фотона излучения:

    ИК-излучение (1000 мкм - 760 нм, энергия фотонов 1-1,5 ЭВ) проникает на глубину 40-70 мм, вызывает колебательные процессы - тепловое действие;
    - видимое излучение (760-400 нм, энергия фотонов 2,0-3,1 ЭВ) проникает на глубину 0,5-25 мм, вызывает диссоциацию молекул и активацию фотохимических реакций;
    - УФ-излучение (300-100 нм, энергия фотонов 3,2-12.4 ЭВ) проникает на глубину 0,1-0,2 мм, вызывает диссоциацию и ионизацию молекул -фотохимическое действие.

    Физиологическое действие низкоинтенсивного лазерного излучения (НИЛИ) реализуется нервным и гуморальным путем :

    Изменение в тканях биофизических и химических процессов;
    - изменение обменных процессов;
    - изменение метаболизма (биоактивация);
    - морфологические и функциональные изменения в нервной ткани;
    - стимуляция сердечно-сосудистой системы;
    - стимуляция микроциркуляции;
    - повышение биологической активности клеточных и тканевых элементов кожи, активизирует внутриклеточные процессы в мышцах, окислительно-восстановительные процессы, образование миофибрилл;
    - повышает устойчивость организма.

    Высокоинтенсивное лазерное излучение (10,6 и 9,6 мкм) вызывает :

    Термический ожог ткани;
    - коагуляцию биологических тканей;
    - обугливание, сгорание, испарение.

    Лечебное действие низкоинтенсивного лазера (НИЛИ)

    Противовоспалительное, снижение отечности ткани;
    - аналгезирующее;
    - стимуляция репаративных процессов;
    - рефлексогенное воздействие - стимуляция физиологических функций;
    - генерализованное воздействие - стимуляция иммунного ответа.

    Лечебное действие высокоинтенсивного лазерного излучения

    Антисептическое действие, образование коагуляционной пленки, защитный барьер от токсических агентов;
    - резание тканей (лазерный скальпель);
    - сварка металлических протезов, ортодонтических аппаратов.

    Показания НИЛИ

    Острые и хронические воспалительные процессы;
    - травма мягких тканей;
    - ожог и отморожение;
    - кожные заболевания;
    - заболевания периферической нервной системы;
    - заболевания опорно-двигательного аппарата;
    - сердечно-сосудистые заболевания;
    - заболевания органов дыхания;
    - заболевания желудочно-кишечного тракта;
    - заболевания мочеполовой системы;
    - заболевания уха, горла, носа;
    - нарушения иммунного статуса.

    Показания к лазерному излучению в стоматологии

    Заболевания слизистой оболочки полости рта;
    - заболевания пародонта;
    - некариозные поражения твердых тканей зубов и кариес;
    - пульпит, периодонтит;
    - воспалительный процесс и травма челюстно-лицевой области;
    - заболевания ВНЧС;
    - лицевые боли.

    Противопоказания

    Опухоли доброкачественные и злокачественные;
    - беременность до 3-х месяцев;
    - тиреотоксикоз, диабет 1 типа, болезни крови, недостаточность функции дыхания, почек, печени, кровообращения;
    - лихорадочные состояния;
    - психические заболевания;
    - наличие имплантированного водителя ритма;
    - судорожные состояния;
    - индивидуальная непереносимость фактора.

    Аппаратура

    Лазеры - техническое устройство, испускающее излучение в узком оптическом диапазоне. Современные лазеры классифицируются :

    По активному веществу (источник индуцированного излучения) -твердотельные, жидкостные, газовые и полупроводниковые;
    - по длине волны и излучения - инфракрасные, видимые и ультрафиолетовые;
    - по интенсивности излучения - низкоинтенсивные и высокоинтенсивные;
    - по режиму генерации излучения - импульсный и непрерывный.

    Аппараты комплектуются излучающими головками и специализированными насадками - стоматологические, зеркальные, акупунктурные, магнитные и др., обеспечивающие эффективность проводимого лечения. Сочетанное использование лазерного излучения и постоянного магнитного поля усиливает лечебный эффект. Серийно производятся в основном три вида лазерной терапевтической аппаратуры:

    1) на базе гелий-неоновых лазеров, работающих в непрерывном режиме генерации излучения с длиной волны 0,63 мкм и выходной мощностью 1-200 мВт:

    УЛФ-01, «Ягода»
    - АФЛ-1, АФЛ-2
    - ШАТЛ-1
    - АЛТМ-01
    - ФАЛМ-1
    - «Платан-М1»
    - «Атолл»
    - АЛОК-1 - аппарат лазерного облучения крови

    2) на базе полупроводниковых лазеров, работающих в непрерывном режиме генерации излучения с длиной волны 0,67-1,3 мкм и выходной мощностью 1-50 мВт:

    АЛТП-1, АЛТП-2
    - «Изель»
    - «Мазик»
    - «Вита»
    - «Колокольчик»

    3) на базе полупроводниковых лазеров, работающих в импульсном режиме генерации излучения с длиной волны 0,8-0,9 мкм, мощностью импульса 2-15 Вт:

    - "Узор", "Узор-2К"
    - "Лазурит-ЗМ"
    - "Люзар-МП"
    - "Нега"
    - "Азор-2К"
    - "Эффект"

    Аппараты для магнитолазерной терапии:

    - "Млада"
    - АМЛТ-01
    - "Светоч-1"
    - "Лазурь"
    - "Эрга"
    - МИЛТА - магнито-инфракрасный

    Техника и методика лазерного излучения

    Воздействие ЛИ проводят на очаг поражения или органа, сегментарно-метамерной зоны (накожно), биологически активной точки. При лечении глубокого кариеса и пульпита биологическим методом облучение проводят в области дна кариозной полости и шейки зуба; периодонтита - световод вводят в корневой канал, предварительно механически и медикаментозно обработанный, и продвигают до верхушки корня зуба.

    Методика проведения лазерного облучения - стабильная, стабильно-сканирующая или сканирующая, контактная или дистанционная.

    Дозирование

    Ответные реакции на ЛИ зависят от параметров дозирования:

    Длина волны;
    - методика;
    - режим работы - непрерывный или импульсный;
    - интенсивность, плотность мощности (ПМ): низкоинтенсивное ЛИ -мягкое (1-2 мВт) применяют для воздействия на рефлексогенные зоны; среднее (2-30 мВт) и жесткое (30-500 мВт) - на область патологического очага;
    - время воздействия на одно поле - 1-5 мин, суммарное время не более 15 мин. ежедневно или через день;
    - курс лечения 3-10 процедур, повторный через 1-2 месяца.

    Техника безопасности

    Глаза врача и пациента защищают очками СЗС-22, СЗО-33;
    - нельзя смотреть на источник излучения;
    - стены кабинета должны быть матовыми;
    - нажимать на кнопку «пуск» после установки излучателя на патологический очаг.

    Статьи по теме: