Определение расчетных минимальных расходов при отсутствии или недостаточности гидрометрических наблюдений. Формула расхода воды — пример расчета бытового водопотребления Методика мосводоканалниипроект по определению расчетных расходов воды

Расчет минимальных расходов воды на неизученных реках или в случае, когда имеющийся фактический материал не пригоден для использования в расчетах по статистическим формулам, производится в основном двумя способами: по картам изолиний минимального стока и по эмпирическим зависимостям.

Карты изолиний используются при расчетах минимального 30-дневного стока средних рек, с площадью водосбора от 1000 – 2000 (критическая площадь) до 75 000 км 2 . Реки с площадью водосбора, меньшей критической, относятся к малым рекам.

Они имеют величину модуля минимального стока, отличную от аналогичной характеристики средних рек. Способ определения минимального стока на малых реках излагается ниже. Критическая площадь показывает величину площади бас­сейна, начиная с которой на реках данного района практически не наблюдается изменение модуля минимального 30-дневного стока (М 30) с ростом площади бассейна (F). Она определяется путем построения зависимости M 30 =f(F) на двуосной логарифмической клетчатке, на которой критической площади будет со ответствовать точка перегиба кривой при переходе ее в прямую, близкую к горизонтальной линии.

На территории России выделено 11 районов в зимний сезон и 14 районов в летне-осенний, в которых реки имеют близкие по размеру критические площади бассейнов. Их величина изменяется от 800 до 10 000 км 2 . Поэтому для ее определения в данном районе может быть использована карта районов (рис. 4.3., 4.4.) для определения минимальных 30-дневных расходов воды на малых реках и таблица наибольших (критических) площадей бассейнов малых рек (табл. 4.3).

Таблица 4.3.

Наибольшие критические площади бассейнов (км 2 ) малых рек

Индекс района по карте Летне-осенний сезон Зимний сезон Индекс района по карте Летне-осенний сезон Зимний сезон
А Д
Б Е
В Ж
Г

Способ определения минимального 30-дневного стока по картам изолиний аналогичен методу вычисления годового стока. Карты изолиний минимального стока не применяются для озерных рек и рек, расположенных в карстовых районах.

Минимальный 30-дневный сток на малых реках, с площадью водосбора не менее 50 км 2 , для увлажненных районов и 100 км 2 для районов недостаточного увлажнения, рассчитывается по эмпирической зависимости вида

где – минимальный 30-дневный расход воды, средний за многолетний период, для зимнего или летне-осеннего сезонов;

F – площадь бассейна реки в км 2 ;

а, n, с - параметры, определяемые в зависимости от географического местоположения реки, устанавливаются по таблице и картам районов для определения минимального 30-дневного стока на малых реках (табл. 4.4).

1 – граница и индекс района для определения наибольшего значения (критической) площади бассейна малой реки; 2 – граница и номер района для определения минимальных 30 – дневных расходов воды на малых рек; 3 – номер района и индекс подрайона для определения минимальных 30 – дневных расходов воды на малых реках; 4 – расчетные створы

Рис. 4.3. Выкопировки из карт районов для определения минимальных 30 – дневных расходов воды на малых реках в летне-осенний сезон.

1 – граница и номер района для определения коэффициента изменчивости; 2граница и номер района для определения минимального среднего суточного расхода воды;

Рис. 4.4. Выкопировка из карты районов для определения минимального среднего суточного расхода воды и коэффициента изменчивости 30-дневного стока в летне-осенний сезон.

Таблица 4.4.

Значения параметров а, n, с

Номер района по карте Зминий сезон Летне – осенний сезон
а 10 3 n с а 10 3 n с
2,50 1,08 1,40 1,27
1,60 1,05 0,94 1,24
1,00 1,14 0,64 1,22
0,012 1,30 0,0034 1,12 -500
0,72 0,74 -300 0,15 1,05 -200
0,24 0,90 -500 0,00013 1,93 -200
1,10 0,85 -1000 0,053 1,06 -500
0,87 0,84 -160 0,065 1,09

Для расчета минимальных 30-дневных расходов воды различной обеспеченности коэффициент изменчивости Сv определяется в зависимости от величины среднего многолетнего минимального 30-днсвного модуля стока за зимний или летне-осенний сезон для данного района. В качестве вспомогательного материала используется карта районов для определения коэффициентов изменчивости и таблица значений C v (табл. 4.5.). Коэффициент асимметрии принимается по аналогии с окружающими изученными реками или назначается по соотношению C S = 2C v для увлажненных районов и C s =1,0-1,5 C v для районов недостаточного увлажнения.

Таблица 4.5.

Значения C v в зависимости от величины модуля минимального 30- дневного стока за летний и зимний сезоны

Номер района по карте М зим. мес л/сек с 1 км 2 С v зим. мес М лет. мес л/сек с 1 км 2 С v лет. мес
0,5-3 0,3-0,2 3-12 0,5-0,3
0-1 0,4-0,3 4-7 0,6-0,3
__ 2-4 0,6-0,4
1,5-6 0,3-0,2 3-12 0,4-0,3
1-5 0,4-0,2 1-7 0,5-0,3
0,5-3 0,4-0,2 6-7 0,6-0,3
1-5 0,7-0,3 1-5 0,6-0,3

Минимальные расходы воды малых рек могут быть получены по зависимости минимального 30-дневного модуля стока обеспеченностью 97% от отметки тальвега русла реки в замыкающем створе, выраженной в абс. м. для районов с одинаковыми гидрогеологическими условиями питания реки.

Величина минимального среднего суточного стока устанавливается по его соотношению с минимальным 30-дневным модулем стока по зависимости

М сут = аМ мес - b, (4.2)

где М сут - минимальный средний суточный модуль стока в л/сек с 1 км 2 . М мес - минимальный 30-дневный модуль стока; а , b - параметры, определяемые в зависимости от местоположения реки (табл. 4.6.).

Таблица 4.6.

Значения параметров а и b для определения минимального среднего суточного модуля стока

Номер района по карте Зминий сезон Летне – осенний сезон
а b а b
0,94 0,1 0,82 0,4
0,86 0,1 0,74 0,1
0,80 0,3 0,83
0,70 0,4 0,72
0,70 0,2 0,42
0,75 0,1 0,47 0,1

Пример 4.3. Определить минимальные 30-дневные и средние суточные расходы воды 90%-ной обеспеченности в летне-осенний сезон р. Ура у ст. Ура-Губа (Кольский п-ов).

1. Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 1020 км2.

2. Исходя из местоположения речного бассейна на карте (рис. 4.3), определяем индекс района и по табл. 4.6 устанавливаем величину площади бассейна, до которой река считается малой (критическую площадь). Величина критической площади для района А, в котором находится бассейн р. Ура, составляет 1400 км2. Следовательно, расчет необходимо производить по схеме, применяемой для определения минимального стока на малых реках.

3. По той же карте находим, что номер района для определения минимального стока малой реки. По табл. 4.4 определяем значения параметров расчетной формулы для района 1, которые равны а = 0,0014, n = 1,27, С=95. Подставив все расчетные параметры в формулу 4.1 получаем, что величина среднего многолетнего минимального 30-дневного расхода воды в летне-осенний сезон составляет 9,85 м3/сек, или 9,65 л/сек с 1 км2.

4. Для определения коэффициента изменчивости Cv по карте (рис. 4.4) устанавливаем, что бассейн р. Ура расположен в районе 1. По табл. 4.5 находим, что в районе 1 величине модуля 9,65 л/сек с 1 км2 соответствует значение коэффициента изменчивости Cv, равное 0,34 (величина Cv определена путем интерполяции с учетом того, что большему значению модуля соответствует меньшая величина Cv).

5. Величина коэффициента асимметрии Cs принимается в соответствии с рекомендацией для увлажненных районов равной 2 Cv

6. По установленным параметрам Q = 9,85 м3/сек, Cv = 0,34 и Cs =2 Cv определяем, что расчетное значение минимального 30-дневного расхода воды 90%-ной обеспеченности равно 5,3 мг/сек.

7. Для расчета минимального среднего суточного расхода воды по уравнению используется карта, показанная на рис. 4.4, по которой устанавливается, что р. Ура расположена в районе 1, для которого районные параметры а и b равны соответственно 0,82 и 0,4 (значения параметров определены по табл. 4.6). В качестве параметра Ммес подставляется величина М 90% ,равная 5,2 л/сек с 1 км 2 . В результате расчета получаем, что искомая величина минимального среднего суточного расхода воды (после перевода модуля в расход воды) 90%-ной обеспеченности составляет 3,94 м3/сек.

Пример 4.4. Определить минимальные 30-дневные и средние суточные расходы воды 75%-ной обеспеченности в летне-осенний сезон река на Кольском п-ове в зоне 3 (рис. 4.3). Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 920 км 2 .

Пример 4.5. Определить минимальные 30-дневные и средние суточные расходы воды 25%-ной обеспеченности в летне-осенний сезон река на Кольском п-ове в зоне 2 (рис. 4.3). Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 1020 км2.

Максимальные расходы воды

Под максимальными расходами воды рек и малых водотоков понимаются наибольшие в году значения мгновенных или срочных расходов, наблюдаемые во время весеннего половодья или дождевых паводков.

На малых водотоках со значительным внутрисуточным изменением уровней и расходов, особенно в период дождевых паводков, пик паводка может пройти между установленными сроками наблюдений. Поэтому срочные максимальные расходы бывают меньше мгновенных. В свою очередь средний суточный максимум меньше срочного. Эта разница бывает значительной на очень малых водотоках и уменьшается с возрастанием площади водосбора реки. Расчеты следует производить для мгновенных максимальных расходов воды.

По генетическому признаку, или происхождению, максимальные расходы воды подразделяются на:

а) образующиеся в основном от таяния снегов на равнинах,

б) от таяния снегов в горах и ледников,

в) от дождей,

г) от совместного действия снеготаяния и дождей – смешанные максимумы.

К максимумам смешанного происхождения относятся максимальные расходы воды, в образовании которых невозможно установить превалирующую роль талых или дождевых вод.

При анализе и расчетах максимальных расходов воды с применением методов математической статистики максимумы различного генетического происхождения рассматриваются раздельно.

Практическая важность вопроса определяется тем, что многие элементы половодья или паводков необходимо учитывать при строительстве гидротехнических сооружений. Особенно важно знать максимальные расходы воды весеннего половодья и дождевых паводков, от величины которых зависят размеры наиболее массовых сооружений – мостовых переходов через реки и малые водотоки, большое количество которых ежегодно строится на автомобильных и железных дорогах, а также размеры водосбросных и водопропускных отверстий других сооружений.

От правильного определения максимальных расходов воды и работы водосбросных отверстий зависит бесперебойность работы сооружения или дороги, безопасность пли судьба всего сооружения и прилегающих к реке объектов, а также, и стоимость сооружения. Завышенные максимальные расходы воды повысят общую стоимость сооружения, что снизит его экономическую эффективность. Занижение максимальных расходов приведет к разрушению сооружения, затоплению прилегающей к реке местности, материальному убытку и человеческим жертвам.

Расчетные ежегодные вероятности превышения, или обеспе­ченности, максимальных расходов воды определяются в зависимости от класса капитальности сооружения и нормируются общими техническими указаниями, рекомендуемыми или обязательными для проектных организаций.

Все гидротехнические сооружения по своей капитальности делятся на несколько классов. Сооружения высоких классов капитальности должны служить несколько сот лет. Чтобы они работали бесперебойно, их водосбросные отверстия нужно рассчитывать на пропуск максимальных расходов воды очень редкой повторяемости. Временные гидротехнические сооружения рассчитываются на максимальные расходы воды более частой повторяемости.

Строительными нормами и правилами [СНиП II–И 7–65] установлены следующие расчетные ежегодные вероятности превышения, или обеспеченности, максимальных расходов воды в зависимости от класса капитальности сооружения:

Класс сооружения ……..I II III IV

Р °/о……………………0,01 0,1 0,5 1

Временные гидротехнические сооружения V класса рассчитываются на пропуск максимальных расходов 10%-ной обеспеченности.

Постоянные водопропускные сооружения на автомобильных дорогах рассчитываются на максимальные расходы воды следующих обеспеченностей:

Бровка насыпи……………………………1,0 2,0

Отверстия мостов, труб…………………1,0 2,0

Ответвленные водоотводы………….....…2,0 4,0

Обвалование населенных пунктов,

вход в шахты, тоннели и пр.……………. 0,1 0,1

При этом если наблюденный максимальный расход имеет обеспеченность меньше 1%, то он принимается в качестве расчетного.

Технические условия проектирования железных дорог предусматривают расчеты отверстий мостов и труб на пропуск следующих расходов:

а) наибольшего обеспеченностью 0,33% для больших и средних мостов и 0,2% для малых мостов и труб;

б) расчетного обеспеченностью, указанной ниже:

Класс сооружения по степени капитальности I I и II II

Обеспеченность расхода, %............................1 (для труб 2) 1 (для труб2) 2

В зависимости от степени достаточности (длительности) ряда наблюдений и надежности исходных данных применяются следую­щие методы расчета максимальных расходов воды:

а) при наличии длительного ряда гидрометрических наблюдений строится эмпирическая кривая обеспеченности, и верхняя часть экстраполируется за пределы наблюдений до заданных обеспеченностей с помощью теоретической кривой обеспеченности;

Б) при наличии короткого ряда наблюдений, недостаточного для построения кривых обеспеченности, но достаточного для приведения его к длительному ряду, имеющийся короткий ряд приводится к длительному ряду и по последнему строятся кри­вые обеспеченности;

в) при наличии короткого ряда наблюдений, недостаточного для приведения его к длительному периоду, а также при отсутствии наблюдений по расчетному створу расчет производится косвенными методами – по методу аналогии или по формулам с обеспеченными параметрами.

Определить расчетные расходы холодной воды (суточный, м3/сут; средний часовой, м3/час; максимальный расчетный секундный расход, л/с; максимальный часовой расход, м3/час) на вводе в здание и подберите водомер

Определить секундный и часовой расходы воды для жилого дома с централизованным горячим водоснабжением с числом квартир n кв = 30 и средней заселённостью V o = 4,5 чел/м 2 , число потребителей U = V o n кв = 4,5 30 = 135 чел. В каждой квартире установлены следующие санитарно-технические приборы: ванны, длиной 1700 мм, умывальник, унитаз, мойка.

1. Устанавливаем число водоразборных приборов в здании

N tot = N = 4*30 = 120;

2. В соответствии с прил. 3 СНиП 2.04.01-85* нормы расхода воды на одного потребителя в час наибольшего водопотребления составляет:

q tot hr,u = 15,6 л/ч; - общий

q h hr,u = 10 л/ч; - горячей воды

q c hr,u = 15,6 - 10 = 5,6 л/ч. - холодной воды

3. По той же таблице норма расхода воды санитарно-техническим прибором:

q tot o = 0,3 л/с (q tot o,hr = 300 л/ч); - общий

q c o = 0,2 л/с (q c o,hr = 200 л/ч); - холодной воды

4. Определяем секундную вероятность действия приборов по формуле:

5. Находим значение произведения NP и по приложению 4 СНиП 2.04.01-85* значения коэффициентов б. Промежуточные значения б находить точной интерполяцией.

N c P c = 135*0,0078 =1,053 б c = 0,99656;

NP = 1,05 б = 0,995

NP = 1,10 б = 1,021

6. Определяем максимальный секундный расход холодной воды:

q c = 5*q c o ? б c =5?0,2? 0,99656= 0,99656 л/с;

7. Определим часовую вероятность действия приборов по формуле:

8. Находим значение произведения NP hr и по приложению 4 СНиП 2.04.01-85* значения коэффициентов б hr . Промежуточные значения б hr находить точной интерполяцией.

N c P c hr = 135*0,028 = 3,78; б c hr = 2,102288;

NP hr = 3,7 б = 2,102

NP hr = 3,8 б = 2,138

9. Определяем максимальный часовой расход холодный воды в м3/ч по формуле:

q с hr = 0,005*q с o,hr ? б с hr =0,005?200?2,102288 = 2,102288 м 3 /ч

10. Из приложения 3 СНиП 2.04.01-85* можно найти:

300 - 120 = 180 л. в сутки наибольшего потребления.

11. Средний часовой расход холодной волы, м3/ч, за период (сутки, смена) максимального водопотребления Т, ч, определяют по формуле:

q T = = = 1,0125 м 3 /ч

Начертить принципиальную схему водоснабжения населенного пункта. Описать назначение основных элементов системы

Устройство водоснабжения населенного пункта

Для водоснабжения населенных пунктов используют воду из открытых водоемов (рек, озер) или из подземных источников. Вода из открытых водоемов содержит болезнетворные бактерии и различные примеси, поэтому требует очистки и обеззараживания. Подземные воды обычно такой обработки не требуют. При проектировании систем водоснабжения учитывают и предъявляемые к ней технические и экономические требования: 1) обеспечение нужд населенного пункта в воде в часы максимального ее потребления; 2) устройство магистральных и внутриквартальных водопроводных сетей, обеспечивающих снабжение водой всех вводимых в эксплуатацию объектов; 3) низкую стоимость воды, поступающей к потребителям; 4) создание эксплуатационной службы, задачей которой является обеспечение требуемого санитарно-гигиенического и технического уровня водоснабжения населенного пункта.

Забор воды из реки обычно осуществляется выше (считая по течению реки) населенных пунктов или промышленных предприятий, что уменьшает загрязнение поступающей в водоприемник воды. Затем она по самотечному трубопроводу 2 поступает в береговой колодец 3 и насосами первого подъема 4 направляется в отстойники 5, где из воды выпадает большая часть содержащихся в ней взвешенных веществ. Ускорения процесса осаждения взве сей достигают добавлением в воду коагулянтов -- химических веществ, которые вступают в реакцию с содержащимися в воде солями, в результате чего образуются хлопья. Последние быстро осаждаются в воде и увлекают за собой взвешенные частицы. Далее вода самотеком поступает на очистные сооружения 6, где сначала фильтруется через слой зернистого материала (кварцевого песка) в фильтрах, а затем обеззараживается -- добавлением в нее жидкого хлора.

Для этой цели применяют озонаторные установки, которые оказывают большее бактерицидное действие и придают воде более высокие вкусовые качества, чем ее хлорирование (озон получают из воздуха посредством электрических раз рядов).

Очищенная и обеззараженная вода стекает в запасные резервуары 7, откуда насосы второго подъема 8 нагнетают воду в магистральные водоводы 9, водонапорную башню 10 и далее через магистральные 11 и распределительные 12 трубопроводы вода поступает в здания к потребителям.

Для забора подземной воды из водоносных пластов устраивают трубчатые колод цы -- скважины, закрепленные колонной стальных труб.

Над колодцем делают надстройку в виде павильона. В ниж ней части колодца устраивают фильтр, через который по ступает вода. Подъем воды обычно осуществляют центро бежными насосами, которые подают ее в сборные резервуары или непосредственно в водопроводную сеть.

Водопроводные сети устраивают из стальных, напорных, чугунных, железобетонных и асбестоцементных труб. Оборудованием этих сетей являются задвижки, слу жащие для выключения отдельных участков сети на случай ремонта или аварии; пожарные гидранты, служащие для получения через них воды для тушения пожаров, и водо разборные колонки.

Хозяйственно-питьевые водопроводы при диаметре труб не более 100 мм допускается устраивать тупиковыми (в виде ряда отдельных ответвлений). При больших диаметрах сети ее устраивают кольцевой, состоящей из нескольких замк нутых колец (Приложение 1); кольцевая сеть обеспечивает бесперебойное снабжение водой всех потребителей и при повреждении ее в какой-либо точке.

вентиляция здание водоснабжение канализационный

Задание 3. Опишите устройства внутренней канализационной сети, её конструктивные элементы, их назначение. Укажите соединительные фасонные части канализационных сетей

Здание оборудовано централизованной системой горячего водоснабжения с приготовлением горячей воды в водонагревателе, расположенном в подвале.

Исходные данные:

Количество этажей n эт =8;

Средняя заселенность квартир U=2,5чел./кв.;

Нормы потребления воды:

общая (холодная и горячая), в сутки наибольшего водопотребления
q u tot =300 л/сут;

общая, в час наибольшего водопотребления л/ч;

Холодная
л/ч;

Расход воды прибором:

общий
;

холодной
;

Высота этажа (от пола до пола) 2,9м;

Длины участков :

В - 1 = 2,1 м;

1 – 2 = 0,8 м;

2 – 3 = 1,4 м;

3 – 4 = 0,5 м;

4 – 5 = 2,9 м;

5 – 6 = 2,9 м;

6 – 7 = 2,9 м;

7 – 8 = 2,9 м;

8 – 9 = 2,9 м;

10 – 11 = 2,9 м

11 – 12 = 4,3 м;

12 – 13 = 6,7 м;

13 – 14 = 7,0 м;

14 – 15 = 6,7 м;

15 – 16 = 7,0 м;

16 – 17 = 9,0 м;

Ввод = 17 м;

Разность отметок пола первого этажа и уровня земли в месте присоединения ввода к уличной водопроводной сети () =1,2 м;

Гарантийный напор в городском водопроводе Н=38 м в. ст.

Рис. 1

Решение:

Для определения расходов на каждом расчетном участке рассчитаем вероятность действия приборов. Для участков холодного водопровода вероятность действия приборов:

где
норма расхода холодной воды потребителями в час наибольшего водопотребления;

U – число водопотребителей:

U = un кв n эт ,

здесь u - средняя заселенность квартир, чел./кв;

n кв – число квартир на этаже, равное числу стояков;

q 0 с – нормативный расход холодной воды диктующим водоразборным устройством;

Из выражения получим:

U=2,5∙8∙8=160 чел;

N – число водоразборных приборов в здании:

N = n кв n пр n эт ,

здесь n пр – количество водоразборных приборов в одной квартире.

N=4∙8∙8=256.

Тогда из выражения получим:

Для общих участков величина р tot определяют по формуле

где общая норма расхода воды, л/ч;

общий нормативный расход воды одним прибором, л/с.

Определяем расход воды на каждом участке по формуле:

где q 0 – нормативный расход воды прибором;

α – безразмерный коэффициент, зависящий от количества водоразбор-
ных приборов на данном участке и вероятности их действия.

Пользуясь приложением 1. определяем величину α для каждого расчетного участка по произведению NP и соответствующий ей максимальный расход воды q c или q tot .

Участок 17-18:

N = 256; N Р = 256 ∙ 0,009 = 2.30 => α = 1,563;

q 17-18 = 5 q 0 tot ∙ α = 5 ∙ 0,3 ∙ 1,563 = 2.341 л/с;

Участок 16 – 17:

N = 256; N Р = 256 ∙ 0,009 = 2,3 => α = 1,563;

Q 15-16 = 5 q 0 c ∙ α = 5 ∙ 0,3 ∙ 1.563 = 2,341 л/с;

Участок 15 – 16:

N = 4 ∙ 8 ∙ 8 = 256; N Р = 256 ∙ 0,00486 = 1,244 => α = 1,093;

Q 14-15 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 1,093 = 1,093 л/с;

Участок 14 – 15:

N = 4 ∙ 6 ∙ 8 = 192; N Р = 192 ∙ 0,00486 = 0,933 => α = 0,933;

q 13-14 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,933 = 0,933 л/с;

Участок 13 – 14:

N = 4 ∙ 4 ∙ 8 = 128; N Р = 128 ∙ 0,00486 = 0,622 => α = 0,756;

Q 12-13 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,756 = 0,756 л/с;

Участок 12 – 13:

N = 4 ∙ 2 ∙ 8 = 64; N Р = 64 ∙ 0,00486 = 0,311 => α = 0,543;

Q 11-12 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,543 = 0,543 л/с;

Участок 11 – 12:

N = 4 ∙ 1 ∙ 8 = 32; N Р = 32 ∙ 0,00486 = 0,156 => α = 0,406;

Q 10-11 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,406 = 0,406 л/с;

Участок 10 – 11:

N = 4 ∙ 1 ∙ 7 = 28; N Р = 28 ∙ 0,00486 = 0,136 => α = 0,383;

q 9-10 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,383 = 0,383 л/с;

Участок 9 – 10:

N = 4 ∙ 1∙ 6 = 24; N Р = 24 ∙ 0,00486 = 0,117 => α = 0,363;

q 8-9 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,363 = 0,363 л/с;

Участок 8 – 9:

N = 4 ∙ 1 ∙ 5 = 20; N Р = 20 ∙ 0,00486 = 0,097 => α = 0,340;

q 7-8 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,340 = 0,340 л/с;

Участок 7 – 8:

N = 4 ∙ 1 ∙ 4 = 16; N Р = 16 ∙ 0,00486 = 0,078 => α = 0,315;

q 6-7 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,315 = 0,315 л/с;

Участок 6 – 7:

N = 4 ∙ 1 ∙ 3 = 12; N Р = 12 ∙ 0,00486 = 0,058 => α = 0,286;

q 5-6 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,286 = 0,286 л/с;

Участок 5 – 6:

N = 4 ∙ 1 ∙ 2 = 8; N Р = 8 ∙ 0,00486 = 0,039 => α = 0,254;

q 4-5 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,254 = 0,254 л/с;

Участок 4 – 5, 3 – 4:

N = 4 ∙ 1 ∙ 1 = 4; N Р = 4 ∙ 0,00486 = 0,019 => α = 0,213;

q 4-5 = q 3-4 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,213 = 0,213 л/с;

Участок 2 – 3:

N = 3; N Р = 3∙0,00486 = 0,015 => α = 0,202;

q 2-3 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,202 = 0,202 л/с;

Участок 1 – 2:

N = 2; N Р = 2 ∙ 0,00486 = 0,01 => α = 0,200;

q 1-2 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,2 = 0,2 л/с;

Участок В-1:

N = 1; N Р = 1 ∙ 0,00486 = 0,00486 => α = 0,200;

q В-1 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,2 = 0,2 л/с.

Определим потери напора по длине каждого расчетного участка по формуле

где l – длина расчетного участка.

h B -1 =360,5∙2,1/1000=0,757м;

h 1-2 =360,5∙0,8/1000=0,288м;

h 2-3 =368,5∙1,4 /1000=0,516м;

h 3-4 =412,5∙0,5/1000=0,206м;

h 4-5 =412,5∙2,9/1000=1,196м;

h 5-6 =114,1∙2,9/1000=0,331м;

h 6-7 =142∙2,9/1000=0,412м

h 7-8 =170,4∙2,9/1000=0,494м;

h 8-9 =196,1∙2,9/1000=0,569м;

h 9-10 =221,8∙2,9/1000=0,643м;

h 10-11 =245,5∙2,9/1000=0,712м;

h 11-12 =274,1∙4,3/1000=1,179;

h 12-13 =129,5∙6,7/1000=0,868;

h 13-14 =55,7∙7/1000=0,390м;

h 14-15 =82,3∙6,7/1000=0,551м;

h 15-16 =110,6∙7/1000=0,774м;

h 16-17 =61,6∙9/1000=0,554м;

h вв =61,6∙17/1000=1,047м.

Весь расчет внутреннего водопровода сводят в расчетную таблицу

Гидравлический расчет внутреннего водопровода

Номер расчетного
участка

Количество водоразборных приборов на данном участке, N , шт.

NP

α

Расчетный расход на участке q , л/с

Диаметр трубопровода d , мм

Длина расчетного участка l , м

Скорость движения воды V , м/с

Гидравлический уклон i

Потеря напора по длине участка h l , м

Сумма потерь напора по длине

7,024 м

h вв =0,306 м

После определения расчетных расходов следует выбрать водомер. Для этого необходимо посчитать расчетные расходы воды: максимальный суточный, средний часовой и максимальный часовой.

Максимальный суточный расход воды (м 3 /сут) на нужды холодного и горячего водоснабжения определяют по формуле

где q u t о t - общая норма расхода воды потребителем в сутки наибольшего водопотребления, л;

U – число водопотребителей.

Средний часовой расход воды
, м
3 /ч, за сутки максимального водопотребления

Максимальный часовой расход воды , м 3 /ч, на нужды холодного и горячего водоснабжения:

где
- общий расход воды, л/ч, санитарно-техническим прибором;

- коэффициент, определяемый по прил. 1 в зависимости от значения произведения NP hr (N – общее число санитарно – технических приборов, обслуживаемых проектируемой системой, P hr – вероятность их использования).

Вероятность использования санитарно – технических приборов для системы в целом определяют по формуле

NP hr =256∙0,032=8,192;

По приложению 1 α hr =3,582;

По приложению 4 выбираем скоростной водомер с диаметром условного прохода 40мм (гидравлическое сопротивление счетчика s=0,51).

После выбора водомера следует определить потерю напора в нем. Потерю напора в водомере h вод , м, определяют по формуле

h вод = sq 2 =0,51∙1,49 2 =1,13 м,

где q – расход воды протекающей через водомер, л/с.

Определяем величину напора, требуемого для подачи нормативного расхода воды к диктующему водоразборному устройству при наибольшем хозяйственно-питьевом водопотреблении с учетом потерь напора на преодоление сопротивлений по пути движения воды.

где Н г – геометрическая высота подачи воды от точки присоединения ввода к наружной сети до диктующего водоразборного устройства:

где Н эт – высота этажа;

n эт – количество этажей;

l в-1 – длина первого расчетного участка (высота расположения диктующей расчетной точки над уровнем пола);

h вв – потеря напора во вводе;

h вод - потеря напора в водомере;

Сумма потерь напора по длине расчетных участков;

1,3 – коэффициент, учитывающий потери напора в местных сопротивлениях, которые для сетей хозяйственно-питьевого водопровода жилых и общественных зданий берутся в размере 30% от потерь напора по длине;

Н р – рабочий нормативный напор у диктующего водоразборного устройства (для ванны со смесителем Н р =3 м).

Н г =2,9(8-1)+1,2+2,1=23,6 м;

Н тр =23,6+0,306+1,13+1,3∙7,024+3=3,167 м.

Н тр =37,167 м < Н г =38 м, следовательно, повысительная насосная установка не требуется.

Задача № 2

Определить максимальный расчетный расход холодной воды q c , л/с, в системе хозяйственно-питьевого водопровода промышленного предприятия, в едином блоке, которого имеются:

а) цех с тепловыделениями менее 84 кДж на 1 м 3 /ч;

б) бытовые помещения с групповыми душевыми;

в) столовая с полным циклом приготовления блюд.

В здании имеется централизованная система горячего водоснабжения.

Нормы расхода холодной воды различными потребителями приведены в табл.2.

Исходные данные:

Решение:

Определим вероятности действия приборов в каждой группе водопотребителей: Р с I , P c II , P c III . Для II группы потребителей (сетки душевые) примем P c II =1 , т. к. все душевые установки могут быть включены одновременно после окончания смены в цехе. Величины Р с I и P c III определяем по формуле

где
- норма расхода воды в час наибольшего водопотребления потребителем группы i (принять по табл. 2);

U i - количество потребителей в группе i (исходные данные);

- секундный расход холодной воды, л/с, водоразборной арматурой для каждой группы водопотребителей (принять по табл. 2);

N i – количество водоразборных приборов, обслуживающих группу водопотребителей.

;

Определим средневзвешенное значение секундного расхода холодной воды водоразборной арматурой, отнесенного к одному прибору, определяемое по формуле

Определим коэффициент α по прил. 1, с зависимости от общего числа приборов N и вероятности их действия
(
определяемой по формуле)

N =53+40+14=107;

NP =107∙0,4=42,8 => α=12,6.

Определим максимальный расчетный расход холодной воды по формуле

q c = 5 q c o α = 5 ∙ 0,1385 ∙ 12,6 = 8,73 л/с.

Ответ: q c = 8,73 л/с.

Задача №3

Группа однотипных n-этажных жилых зданий снабжается водой из центрального теплового пункта, присоединенного трубопроводом ввода к уличной водопроводной сети. Холодная вода из уличной сети по вводу поступает в центральный тепловой узел, в котором установлен скоростной водонагреватель. Часть холодной воды проходит через водонагреватель и поступает в горячую систему водоснабжения зданий, другая часть поступает в систему холодного водоснабжения.

В каждой квартире установлено четыре водоразборных прибора (умывальник, мойка, ванна с душевой сеткой и унитаз со смывным бочком).

Определить расчетные расходы воды для теплового пункта (на нужды холодного и горячего водоснабжения), подобрать водомер, устанавливаемый на вводе в тепловой пункт, вычислить средний и максимальный часовые расходы горячей воды группой зданий; произвести необходимые расчеты и выбрать марку водонагревателя.

Нормативные секундный и часовой расходы воды водоразборным устройством принять:

q = 0.3 л/с q =300 л/ч

q= 0,2 л/с q= 200 л/ч

Исходные данные:

Число однотипных зданий n зд

Число этажей n эт

Число квартир на этаже n кв

Средняя заселенность квартир U чел/кв

Норма расхода воды в сутки наибольшего водопотребления:

Общая q , л

Горячая q , л

Норма расхода воды в час наибольшего водопотребления:

Общая q , л

Горячая q , л

Начальные температуры теплоносителя, С

конечные температуры теплоносителя С

Решение задачи.

Максимальное суточное потребление воды теплоузлом на нужды холодного и горячего водоснабжения зданий определяется по формуле:

Q =0,001 q U где,

Число водопотребителей U= u n кв n эт n зд

u - средняя заселенность квартир

n кв - число квартир

n эт - число этажей

n зд - число зданий

U = 3,0 ∙ 4 ∙ 6 ∙ 6 = 432

Q = 0,001 ∙300 ∙ 432 = 129,6 м 3 / сут

Средний часовой расход воды за сутки максимального водопотребления определяется по формуле:

q = Q /24

q = 129,6/24 =5,4 м 3 / ч

Максимальный часовой расход воды на нужды холодного и горячего водоснабжения:

q = 0,005 q
где

q- общий расход воды л/ч, санитарно-техничиским прибором;

Коэффициент определяемый из приложения 1 (рабочий программы и задания на контрольную работу 23/10/2) в зависимости от значения произведения N P (N - общее число санитарно-технических приборов, обслуживаемых проектируемой системой, P -вероятность их использования).

P hr =
для общих участков величину P определяют по формуле

P =
,

Где q-общая норма расхода воды (холодной и горячей), л, потребителем в час наибольшего водопотребления.

q- общий нормативный расход воды одним потребителем, л/с.

N = n пр n эт n зд n кв

Здесь n пр - число водоразборных приборов в одной квартире

N= 4 ∙ 6 ∙ 6 ∙ 4= 576

P = =0,0108

P hr =
=0,0389

N P = 576 ∙ 0,0389 = 22,4

7,5 из приложения 1

q = 0,005 ∙ 300 ∙ 7,5 = 11,25 м 3 /ч

По вычисленным значениям расчетных расходов воды, руководствуясь приложением 4 (23/10/2),

следует подобрать марку водомера

условного

счетчика,

параметры

Расход воды, м 3 /ч

Порог чувст-

вительности

Максимальный

объем воды

Гидравлическое

сопротивление

счетчика

Минималь-

Общий максимальный секундный расход воды группой зданий q

=5∙ ,

где,
- коэффициент, определяемый по приложению 1 в зависимости от значения произведения N P

N P = 576∙0,0108 = 6,22

= 2,962

5∙0,3∙2,962= 4,44 л/с

вычисляем потери напора в водомере

где s- гидравлическое сопротивление счетчика, принимаемое по приложению 4 (23/10/2)

q- расход воды, протекающий через водомер л/с

h = 0,142 ∙ 4,44 2 = 2,8 м,

Среднечасовой расход горячей воды

q

где - норма расхода горячей воды, л, потребителем в сутки наибольшего водопотребления

U – количество потребителей горячей воды

T – количество часов в сутках (Т = 24ч).

q
= 2,16м 3 /ч

Максимальный часовой расход горячей воды

q = 0,005 q

где q - нормативный расход горячей воды водоразборным устройством

Коэффициент, определяемый по прил.1 в зависимости от значения произведения N P (N - общее число санитарно-технических приборов, обслуживаемых системой горячего водоснабжения, P - вероятность их использования).

P hr =

где - вероятность действия санитарно-технических приборов в системе горячего водоснабжения

- нормативный расход горячей воды, л/с, санитарно-техническим прибором.

,

где - нормативный расход горячей воды, л, потребителем в час наибольшего водопотребления

N – количество водоразборных приборов, обслуживающих систему горячего водоснабжения

N = n пр n эт n зд n кв

= 0,0104

P hr =
= 0,0374

N P = 576 ∙ 0,0374 = 21,54

q = 0,005 ∙ 200 ∙ 7,282 = 7,282 м 3 /ч

Расчетный расход тепла для приготовления горячей воды в течении часа максимального водопотребления

Q = 1,16 q (55- t )+ Q

где t - температура холодной воды, о С, в сети водопровода (принимаем равной 5 о С)

Q - потери тепла падающими и циркуляционными трубопроводами системы горячего водоснабжения

Потери тепла можно учесть приближенно по формуле

Q = Qk ,

где Q - среднечасовой расходтепла, на нужды горячего водоснабжения

k – коэффициент, учитывающий потери тепла трубопроводами (принимаем k= 0,35)

125,28 кВт,

Q= 125,28 ∙ 0,35 = 43,85 кВт

Q= 1,16 ∙ 7,282 (55-5)+43,85 = 466,206 кВт

Согласно условию задачи приготовление горячей воды производится в скоростном водонагревателе, установленном в центральном тепловом пункте.

В скоростных водонагревателях расходуемая вода протекает с большой скоростью 0,5-2,5 м/с. Благодаря этому они имеют высокие коэффициенты теплопередачи, а следовательно, очень компактны и занимают небольшую площадь.

Расчет целесообразно вести в следующем порядке.

Задавшись скоростью движения нагреваемой воды v н.в. в приделах 0,5-2 м/с, определяем требуемую площадь сечения трубок водонагревателя f mp , исходя из максимального часового расхода горячей воды q

f mp =

Принимаю v н.в. = 1,5 м/с

f mp =
= 0,00135 м 2

пользуясь прил.6, подбираем водонагреватель, по ближайшему к вычисленному значению площади сечения трубок.

f mp =0,00185 м 2

после чего для выбранной марки водонагревателя вычислим скорости движения нагреваемой v н.в. и греющей v гв воды.

где
- площадь сечения межтрубного пространства, по которому течет греющая вода

t н, t к – начальная и конечная температуры теплоносителя

- плотность воды (= 1000кг/м 3)

С – теплоемкость воды (С=4,19 кДж/кг град)

0,00287 м 2 - исходя из прил. 6

Вычисляем скорость движения нагреваемой воды

=1,093 м/с

Скорость движения греющей воды

=1,292 м/с

По вычисленным значениям v н.в и v гв, пользуясь приложением 7 находим величину коэффициента теплопередачи нагревательной поверхности (К) При достаточном напоре в наружной сети скоростной нагреватель считается плохо подобран, если К 1700 Вт/м 2 град В этом случае следует взять более мелкий нагреватель, у которого будет большие скорости протекания нагреваемой и греющей воды, а следовательно, и большее значение К.

К= 1943,2

Необходимую поверхность нагрева водонагревателей определяют по вычисленному часовому расходу тепла и коэффициента теплопередачи.

где - поправочный коэффициент, учитывающий наличие накипи на трубах подогревателя (=0,6 – для стальных трубок, =0,75 – для латунных трубок)

- расчетная разность температур теплоносителя и нагреваемой воды

Для скоростных водонагревателей определяется по формуле

=

где б, м – большая и меньшая разность температур между теплоносителями и нагреваемой водой на концах водонагревателя.

Чаще всего скоростной водонагреватель работает по противоточной схеме (холодная вода встречает остывший теплоноситель, а нагретая – горячий).

Б = t н – t г (или t к –t х)

М = t к – t х (или t н – t г)

где t н и t к - начальная и конечная температура теплоносителя

t г и t х начальная и конечная температура нагреваемой воды (t х = 5, t г = 75
)

М = 90-75=15

Определим необходимую поверхность нагрева водонагревателей

= 666,4 м 2

Вычисляем величину требуемой поверхности нагрева водонагревателя, определяют требуемое число секций нагревателя

где - требуемое число секций принятого водонагревателя (округляется до целого числа секций в большую сторону)

- площадь поверхности нагрева одной секции (берем из прил. 6)

=298 секц.

Задача №4

Произвести гидравлический расчет дворовой канализационной сети, отводящей сточные воды от жилого здания в городскую сеть, согласно заданному варианту генплана.

Поверхность участка земли – горизонтальная.

Исходные данные

Номер варианта

Вариант генплана дворовой канализации

*Число водоразборных приборов в здании N

*Число жителей U

*норма расхода холодной и горячей воды в час наибольшего водопотребления q л

Отметка поверхности земли

Отметка лотка трубы дворовой канализационной сети в первом колодце

Отметка лотка трубы городской канализации

Длинны участков:

l 3

На генплане предоставлена дворовая канализационная сеть жилого здания. Сточная жидкость через выпуски из здания самотеком поступает в дворовую сеть. Число выпусков – один. Каждый выпуск заканчивается смотровым канализационным колодцем. Кроме того, на красной линии устанавливается контрольный канализационный колодец (КК), в котором при необходимости устраивается перепад. Для внутри квартальной канализационной сети применяют трубы диаметром не менее 150 мм.

К1 – дворовый канализа-

цонный колодец

КК – контрольный кана- лиционный колодец.

ГКК – городской канали-

зационный колодец

Основным назначением гидравлического расчета сети дворовой канализации является выбор наименьшего уклона трубы, при котором обеспечивается прохождение расчетного расхода сточной жидкости со скоростью не менее 0,7 (скорость самоочищения). При скорости меньшей 0,7 возможно отложение твердой взвести и засорение канализационной линии.

Желательно, чтобы дворовая сеть имела один и тот же уклон на всем протяжении. Наименьший уклон труб диаметром 150 мм составляет 0,008. Наибольший уклон труб канализационной сети не должен превышать 0,15. при этом наполнение труб должно быть не менее 0,3 диаметра. Допустимое максимальное наполнение труб диаметром 150 – 300 мм не более 0,6.

Гидравлический расчет следует производить по таблицам, назначая скорость движения жидкости v, м / с и наполнение h / d таким образом, чтобы на всех участках было выполнено условие:

v
0,6

Номер расчетного участка

Длина участка, м

Количество санитарных приборов на данном участке N, шт.

Общий расход холодной и горячей воды на расчетном участке q tot л/с

Расход сточной жидкости на расчетном участке q s л/с

Диаметр труб d, мм

Уклон труб, i

Скорость течения сточной жидкости, v, м/с

Наполнение трубы, h/d

Отметка лотков трубы на участках, м.

Разность отметок лотков на участке, м

q Расчёт населения города 2. Расчет... показателем правильности выбора их диаметров. Сеть...
  • Расчёт затрат и тарифов на услуги

    Курсовая работа >> Экономика

    ... (тарифов) на услуги водоснабжения и водоотведения Тарифы (цены) на услуги водоснабжения и водоотведения разрабатываются на предприятиях... общей схеме водоснабжения . Последовательность расположения отдельных сооружений системы водоснабжения и их состав могут...

  • Водоснабжение и водоотведение (3)

    Реферат >> Геология

    Санитарно-защитной полосы (СЗП), соответственно их назначению, устанавливается специальный режим и определяется... качества воды. Расчёт ЗСО Расчёт поясов зависит от конкретного источника водоснабжения , гидрогеологических условий...

  • Водоснабжение и водоотведение жилого дома (3)

    Реферат >> Строительство

    ... водоснабжения здания 5 Ввод водопровода 5 Водомерный узел 5 Особенности устройства внутренних водопроводных сетей 5 2 Расчёт ... при условии возможности их совместного транспорти­рования и... в местах, удобных для их обслуживания. На подземных трубопроводах...

  • Сети водоотведения города с населением 63010 жителей

    Курсовая работа >> Строительство

    Энергетического строительства Кафедра «Водоснабжение и водоотведение» Пояснительная записка к курсовому... от величин расходов, их значения определяются для... расчёту хозяйственно-бытовой: ; С этого пункта расчёт ведем в табличной форме таблица 4. Расчёт ...

  • Каждая секция жилого дома рассчитана на 35 квартир, всего в здании 35 · 2 секции = 70 квартир.

    Количество потребителей на одном этаже секции составит: (2 кв. · 4 чел.) + (3 кв. · 2 чел.) = 14 чел. В одной секции – 14 · 7 эт. = 98 чел. В жилом здании – 2 секции · 98 чел. = 196 чел.

    С учетом степени благоустройства общая норма расхода воды составят 300 л на чел.в сутки, в час наибольшего водопотребления норма расхода холодной воды 5,6 л/ч .

    Расчет начинаем с определения расчетного расхода холодной воды на вводе в здание. Так как в здании одинаковые потребители, то вероятность действия приборов Р будет постоянна для всех участков. Вероятность действия приборов Р определяем по формуле

    ,

    где Р – вероятность действия приборов;

    – общая норма водопотребления воды в час наибольшего водопотребления, л/ч×чел. .

    U – число потребителей (жильцов) в доме, 196 чел.;

    – секундный расход воды расчетным прибором, 0,2 л/с (прил. 2, ), при наличии в здании поливочных кранов = 0,3 л/с;

    N – общее количество приборов в здании, N = 299 шт. (3 прибора в однокомнатной кв. и 6 приборов в трехкомнатной кв. Итого: 3 прибора · 3 кв. + 6 приборов · 2 кв. = 21 прибор на этаже секции. 21 прибор · 7 эт = 147 приборов в секции. 147 приборов · 2 секции = 294 прибора в доме + 2 смесителя в мусоросборных камерах + 3 поливочных крана = 299 приборов)

    Находим произведение:

    РN = 0,003399 · 299 = 1,016301.

    Тогда максимальный расчетный секундный расход воды, л/с, на вводе будет равен

    где q – максимальный секундный расход прибора, 0,3 л/с;

    a – коэффициент, зависящий от вероятности действия приборов и их количества α → f(РN), по прилож. 4 α = 0,977:

    q c = 5· 0,977· 0,3 = 1,466 л/с.

    Расчет ввода

    Расчет ввода сводится к определению диаметра ввода и потерь напора на вводе, возникающих при пропуске расчетного расхода.

    В зависимости от величины q c по таблицам гидравлического расчета водопроводных труб подбирают диаметр ввода и величину потерь на единицу его длины.

    По табл. для q c = 1,466 л/с при оптимальной скорости в пределах 0,9 … 1,2 м/с находим: диаметр ввода - 40 мм, удельные потери на трение – 0,0935 м; скорость – 1,163 м/с.

    Общая величина потерь на вводе определяется по формуле

    H ltot = i en · l en · K m ,

    где i en = 0,0935 м – удельные потери на трение на вводе при расчетном расходе, л/с;

    l en = 21 м – длина ввода;

    K m = 1,1 – коэффициент, учитывающий потери напора в местных сопротивлени-ях на вводе:

    H l = 0,0935 · 21 · 1,1 = 2,16 м.

    Подбор водомеров

    Для учета расхода холодной воды на вводе в здание у наружной стены в легкодоступном, освещенном и отапливаемом помещении (температура воздуха должна быть не ниже 5 0 С) предусматриваем установку водомера. Подбор калибра водомера производим по среднечасовому расходу холодной воды в сутки максимального водопотребления. Среднечасовой расход воды может быть определен по следующей формуле:

    Где - среднечасовой расход воды, м 3 /ч;

    Норма расхода холодной воды в сутки наибольшего водопотребления, 180 л/(чел.· сут), прил. 3 ;

    U = 196 чел – число водопотребителей;

    Т = 24 ч – период водопользования,

    1,47 м 3 /ч.

    Эксплуатационный расход воды выбранного счетчика должен быть не менее данного среднечасового расхода воды. По табл. 1 выбираем крыльчатый водомер калибра 15 мм.

    Правильность выбранного водомера проверяем на пропуск расчетного максимального секундного расхода воды, при котором потери напора в водомере не должны превышать 5,0 м.

    Потери напора в водомере следует определять по формуле:

    h = S (q c ) 2 ,

    где h – потери напора в водомере, м;

    S – гидравлическое сопротивление водомера, S = 14,5 м·(л/с) -2 , см. табл. 1;

    q c – максимальный секундный расход холодной воды на вводе, q c = 1,466 л/с,

    h = 14,5 · (1,466) 2 = 30,1 м.

    Так как потери напора превосходят допустимые, увеличиваем диаметр водомера, принимаем крыльчатый водомер диаметром 20 мм с гидравлическим сопротивлением, равным 5,18 м·(л/с) -2 , тогда потери напора при пропуске максимального секундного расхода воды

    h = 5,18 · (1,466) 2 = 12,5 м.

    Таблица 1

    Технические характеристики водомеров

    Диаметр условного прохода счетчика, мм Параметры
    Расход воды, м 3 /ч Порог чувствитель-ности, м 3 /ч, не более Макс. объем воды за сутки, м 3 Гидравлич. сопротивление счетчика S, м·(л/с) -2
    Миним. Эксплуатац. Макс.
    0,03 1,2 0,015 14,5
    0,05 0,025 5,18
    0,07 2,8 0,035 2,64
    0,1 0,05 1,3
    0,16 6,4 0,08 0,5
    0,3 0,15 0,143
    1,5 0,6 810×10 -5
    0,7 264×10 -5
    1,2 76,6×10 -5
    1,6 13×10 -5
    3,5×10 -5
    1,8×10 -5

    Так как условия не выполняются, принимаем к установке крыльчатый водомер диаметром 25 мм (ВК-25) с гидравлическим сопротивлением равным 2,64 м·(л/с) -2 . Тогда потери напора в водомере при пропуске расчетного расхода составят

    h = 2,64 · (1,466) 2 = 5,7 м.

    Так как условия не выполняются, принимаем к установке крыльчатый водомер диаметром 32 мм (ВК-32) с гидравлическим сопротивлением равным 1,3 м·(л/с) -2 . Тогда потери напора в водомере при пропуске расчетного расхода составят

    h = 1,3 · (1,466) 2 = 2,79 м.

    Некоторые технические характеристики выбранного водомера приведены в табл. 2.

    Таблица 2

    Расчетные параметры принятого водомера

    Гидравлический расчет

    Определив расходы воды на ввод здание и подобрав водомер, переходим к гидравлическому расчету внутренней водопроводной сети.

    За диктующую точку на сети внутри здания принят смеситель для умывальника, расположенный на 7-ом этаже в крайней левой секции здания, наиболее удаленного и высоко расположенного относительно ввода. Перед этим прибором необходимо обеспечить максимальный свободный напор Н f = 3 м ( прил. 2). Расчетные точки внутри здания проставлены на расчётной схеме и на аксонометрической схеме.

    Гидравлический расчет начинаем с определения параметров сети по главному направлению, последовательно от диктующей точки к вводу в здание. Диаметр трубопроводов внутриквартирной разводки конструктивно принимаем 15 мм. Расход холодной воды расчетным прибором на этажах равен = 0,2 л/с

    Результаты расчета сводим в табл. 3.

    Таблица 3

    Расчет водопроводной сети по стояку Ст. В1-1

    Расчетные участки Длина участка l, м Вероятность действия приборов Р Общее число приборов на участке Произведение Р·N Коэффициент α Расчетный расход, л/с Диаметр трубопровода, мм Скорость воды, V м/с Потери напора по длине трубопровода
    Удельные i , м На участке i·l , м
    = 0,2 л/с
    1-2 1,66 0,003399 0,003399 0,2 0,2 1,17 0,354 0,588
    2-3 0,55 0,006798 0,2 0,2 1,17 0,354 0,195
    3-4 3,7 0,010197 0,2 0,2 0,62 0,072 0,266
    4-5 2,8 0,020394 0,215 0,215 0,68 0,089 0,249
    5-6 2,8 0,030591 0,238 0,238 0,74 0,103 0,288
    6-7 2,8 0,040788 0,257 0,257 0,8 0,118 0,33
    7-8 2,8 0,050985 0,2745 0,2745 0,85 0,133 0,372
    8-9 2,8 0,061182 0,2905 0,2905 0,9 0,145 0,406
    9-10 5,56 0,071379 0,306 0,306 0,95 0,16 0,89
    = 0,3 л/с
    10-11 7,23 0,003399 0,074778 0,3105 0,466 0,88 0,1 0,723
    11-12 0,55 0,146157 0,395 0,593 1,12 0,156 0,086
    12-13 4,52 0,217536 0,464 0,696 0,736 0,049 0,222
    13-14 2,58 0,220935 0,468 0,702 0,742 0,050 0,129
    14-15 0,28 0,292314 0,527 0,791 0,831 0,062 0,017
    15-16 10,5 0,435072 0,634 0,951 1,001 0,088 0,924
    16-17 0,25 0,438471 0,637 0,956 1,006 0,089 0,022
    17-18 0,53 0,50985 0,685 1,028 1,053 0,0972 0,052
    18-19 4,5 1,016301 0,977 1,466 1,163 0,0935 0,421
    H ltot = 6,18 м

    Требуемый напор воды для здания рассчитываем, зная отметки расположения расчетного прибора и ввода воды в здание, тип расчетного прибора и соответственно свободный напор на излив из него, общие потери напора при движении от городской магистральной сети до расчетного прибора, по формуле:

    Н tr = H qeom + H l + h + H l,tot + H m + H f ,

    где H qeom – геометрическая высота расположения диктующего прибора, определяемая по разности отметок этого прибора и верха трубы городского водопровода:

    H qeom = 16,8 + 0,8 + 1 + 2,1 = 20,7 м,

    здесь 16,8 м – отметка перекрытия седьмого этажа;

    0,8 м – высота установки крана-смесителя для умывальника;

    1 м – высота перекрытия первого этажа над уровнем земли;

    2,1 м – глубина заложения городского водопровода по своду трубы; (2,3 – d200мм.)

    H l = 2,16 м потери напора на вводе;

    h = 2,79 м – потери напора в водомере;

    H ltot = 6,18 м – сумма потерь напора по длине трубопровода от водомерного узла до расчетного прибора (см. табл. 3);

    H m – потери напора на местные сопротивления, принимаются равными 30 % от потерь напора по длине трубопровода:

    H m = = = 1,854м;

    H f = 3 м – свободный напор расчетного прибора, прил. 2, .

    Н tr = 20,7 + 2,16 + 2,79 + 6,18 + 1,854 + 3 = 36,684 ≈ 36,7 м.

    Так как расчетный требуемый напор больше гарантированного, для обеспечения бесперебойной работы системы водоснабжения необходимо установить насосы.

    Требуемый напор насосов

    Н р = Н tr - H q ,

    где Н tr = 36,7 м– требуемый напор воды для здания;

    Н g = 29 м– гарантированный напор воды в сети холодного водопровода,

    Н р = 36,7 - 29 = 7,7 м.

    Рабочий расход насоса q c = 1,466 л/с или 1,466 · 3,6 = 5,28 м 3 /ч.

    С учетом потерь напора в насосе, равных 2 м,

    Н р = 7,7 + 2 = 9,7 м.

    Таким образом, следует подобрать и установить в подвальном помещении повысительные насосы (один рабочий, один резервный) с рабочим расходом q c ≥ 1,466 л/си напором Н р ≥ 9,7м.

    Таким насосом мог бы быть «инлайн» насос Grundfos TP 32-150/2В с характеристиками Q = 8 м 3 /ч, Н р = 14 м.


    Похожая информация.


    Разделим потребители воды на две категории: одна категория потребляет воду периодически, другая — длительное время.

    Первая категория включает в себя точки водораз-бора, потребляющие воду в течение максимум 10 минут, например, умывальники, кухонные мойки, туалеты и т.д. Отличительной чертой этой категории является то, что вода никогда не льется одновременно из всех кранов. Семья, состоящая из двух человек, к примеру, обычно может использовать не более двух кранов одновременно, независимо от того, сколько их имеется в доме.

    Более того, стиральные и посудомоечные машины забирают воду периодически, в зависимости от установленной программы. Поэтому очевидно, что выбор насоса с очень высокой производительностью экономически невыгоден с точки зрения стоимости, т. к. он будет использован не на полную мощность.

    В таблице на следующей странице представлен нормальный расход воды для различных типов потребителей при периодическом использовании. Нормальный расход — это среднее потребление воды при достаточном давлении насоса, обычно оно составляет 10 метров.

    Рис.91 Водоснабжение зданий

    Рис.92 Различные области применения воды

    Нормальный расчет расхода воды в наиболее часто используемых точках водоразбора

    Потребители

    Нормальный расход q n

    Холодная вода

    Горячая вода

    л/с

    м 3 /ч

    л/с

    м 3 /ч

    Ванна

    1,08

    1,08

    Биде

    0,36

    1,08

    Душ

    0,72

    1,08

    Раковина для умывания

    0,36

    1,08

    Кухонная мойка

    0,72

    1,08

    Душевые, используемые одновременно (например, на предприятиях)

    0,36

    1,08

    Раковины для мытья, используемые одновременно (например, на предприятиях)

    0,03

    0,11

    0,03

    0,11

    Питьевые чаны для скота

    0,03

    0,11

    Слив писсуара

    1,44

    Слив унитаза

    5,40

    Краны с питьевой водой в конюшнях

    0,72

    0,72

    0,72

    0,72

    Туалетный бачок

    0,36

    ий пример

    Потребители

    Нормальный расход q n

    Холодная вода

    Горячая вода

    л/с

    м 3 /ч

    л/с

    м 3 /ч

    Ванна

    1,08

    1,08

    Душ

    0,72

    1,08

    Раковина для умывания

    0,36

    1,08

    Кухонная мойка

    0,72

    1,08

    Домашние стиральные и посудомоечные машины

    0,72

    0,72

    Туалетный бачок

    0,36

    Всего

    3,96

    3,60

    Полный нормальный расход составляет:

    1,1 л/с (холодная вода) + 1 л/с (горячая вода) = 2,1 л/с, что соответствует 7,56 м 3 /ч.

    Рис.93 Диаграмма, показывающая возможный максимальный расход воды

    Возможный максимальный расход воды

    Такого расхода на практике фактически не бывает, и он рассчитывается как максимальный расход, который теоретически может иметь место.

    Точка водоразбора с наибольшим нормальным расходом определяет, какую характеристику (1, 2, 3 или 4) использовать. Если наибольший нормальный расход в доме приходится на ванну (0,3 л/с), то должна быть применена характеристика №3.

    По оси Х из точки 2,1 проведите вертикальную линию вверх до пересечения с кривой характеристики №3. Далее из точки пересечения выведите горизонтальную линию до пересечения с вертикальной осью Y

    Для данного примера, по диаграмме, нормальным наивысшим расходом будет 0,57 л/с, что соответствует 2,05 м 3 /ч для всех точек водоразбора периодического использования (категория 1).

    Продолжительное использование

    После подсчета возможного максимального расхода из потребителей, относящихся к категории 1, добавляется нормальный расход потребителей категории 2.

    Нормальный расход для точек водоразбора продолжительного использования

    Потребители

    Нормальный расход q n

    Холодная вода

    Горячая вода

    л/с

    м 3 /ч

    л/с

    м 3 /ч

    Тепловые насосные установки для отвода тепла

    0,72

    Полив сада и газона (каждый распылитель)

    0,72

    Наполнение плавательного бассейна

    0,72

    охлаждение молока и испарителей

    0,72

    оросительные системы

    Запросить производителя

    Максимальное потребление

    Если в доме имеется тепловой насос (охладитель) для отвода тепла, с помощью которого происходит охлаждение летом и подогрев зимой, а также краны для поливки сада и газонов, то полное максимальное потребление будет следующим:

    Бытовое использование

    0,57

    2,05

    Тепловой насос

    0,72

    Полив сада

    0,72

    Полное максимальное потребление

    0,97

    3,49

    На работу центробежного насоса при перекачивании воды оказывают влияние несколько факторов:

    • Высота всасывания (от поверхности воды до насоса)
    • Потери на трение во всасывающем трубопроводе и клапане
    • Высота от насоса до наивысшей точки водораз-бора
    • Потери на трение в напорном трубопроводе (в зависимости от производительности)
    • Необходимое минимальное давление в кранах (в зависимости от фитингов)

    Рис.94 Фактический напор насоса

    При подсчете фактического напора насоса должна быть использована величина максимального водо-потребления, в данном случае 0,97 л/с (3,49 м 3 /ч).

    Рис.95 Потери напора во всасывающем и обратном клапанах типа BVF и MVF.

    Виды потерь (см. рис. 97, 98 и 99)

    Потери в метрах

    Потери на трение во всасывающем клапане

    0,80

    Потери на трение в 8 метровой 11"" всасывающей трубе составляют 8 х 0,08 м

    0,64

    Потери на трение в 60 метровом 11"" напорном трубопроводе:

    Прямые участки труб: 60 х 0,08 м

    6 колен, 3 клапана 0,05 (6 х 0,05 + 3 х 1,5)

    4,80 0,38

    Потери на трение в фитингах верхних кранов (установленные производителем при расходе 0,2 л/с)

    2,00

    Высота всасывания (от уровня воды до насоса)

    6,05

    Высота от насоса до наивысшей точки водоразбора

    21,50

    Необходимое минимальное давление в кране (установленное производителем при расходе 0,2 л/с)

    10,00

    Фактический напор насоса при 3,49 м 3 /ч

    46,17

    Рис.96 Потери давления в горячих оцинкованных стальных трубах с отложениями

    Диаграммы потерь на трение

    Данная таблица и диаграммы для расчета потерь на трение на прямых участках трубопровода и таких участках, как клапаны, колена и т. д., не обязательно идентичны тем, которые Вы используете в своих расчетах, но принципы их совпадают. Вы можете использовать тот вариант, который считаете наиболее подходящим для себя.

    На практике 80% продаваемых насосов устанавливаются взамен старых, отработавших свой срок. При подборе насоса для замены часто остаются неизвестными такие параметры системы, как возраст труб, тип обратного клапана в скважине, тип водопроводных кранов в доме и уровень отложений ржавчины и ила в трубах. Поэтому необходимо предугадать эти факторы для более точного определения коэффициентов трения.

    Во-первых, вы должны узнать тип насоса, который был прежде в данной установке. На основе полученной информации, Вы сможете определить тип нового насоса.

    Если нет достаточной информации по старому насосу, Вы должны узнать, с какой глубины насос должен качать воду (например, 6,05 м) и какое расстояние от насоса до верхней точки водоразбора (в примере 21,5 м). Затем добавьте 10 метров, соответствующих необходимому давлению в верхней точке водоразбора. После этого определяем общий напор: 6,05 + 21,5 + 10 = 37,55 метров, к этому значению нужно добавить примерно 30%, равных 11,26 метра, запас на потери на трение во всасывающем клапане, трубопроводе, присоединениях и т. д.

    Таким образом, фактический напор насоса будет равен: 37,55 + 11,26 = 48,81 метра.

    Поделиться с друзьями:
    Статьи по теме: