Удельный расход тепловой энергии на отопление здания: общие понятия. Расход теплоты на отопление Расход теплоэнергии на отопление

Частный дом можно рассматривать как термодинамическую систему, обладающую внутренней энергией и ведущую теплообмен с окружающей средой. Энергия, которую дом получает или теряет в ходе теплообмена, называют теплотой. Источником теплоты в частном доме является теплогенератор: котел, конвектор, печь, нагревательный элемент и т.д.

Чем интенсивнее идет теплообмен между домом и окружающей средой, тем быстрее «уходит» тепло дома и тем интенсивнее должен работать источник тепловой энергии, компенсирующий потери. Понятно, что интенсивная работа котла сопряжена с большим расходом топлива, что ведет к росту расходов на отопление.

Но не это главное: понятие комфорта в жилище в холодное время года неразрывно связано с теплом в доме, что возможно только при равновесии между потерями тепловой энергии и ее производством.

Однако возможности любого теплогенератора ограничены его конструктивными особенностями. Это значит, что для обеспечения тепла и комфорта в доме котел или иной источник тепловой энергии нужно подбирать в соответствии с тепловыми потерями строения, делая при этом некоторый запас (обычно 20%) на случай ветреной погоды или сильных морозов.

Итак, мы определились: прежде чем выбрать котел для обогрева дома нужно определить его (дома) тепловые потери.

Определяем тепловые потери

Теплопотери здания можно рассчитывать отдельно для каждой комнаты, имеющей внешнюю часть, контактирующую с окружающей средой. Затем полученные данные суммируются. Для частного дома удобнее определять тепловые потери всего строения в целом, считая потери тепла отдельно через стены, кровлю, и поверхность пола.

Следует отметить, что расчет тепловых потерь дома достаточно сложный процесс, требующий специальных знаний. Менее точный, но при этом вполне достоверный результат можно получить на основе онлайн калькулятора расчета тепловых потерь.

При выборе онлайн калькулятора предпочтение лучше отдавать моделям, учитывающим все возможные варианты потери тепла. Вот их перечень:

    поверхность наружных стен

    поверхность кровли

    поверхность пола

    вентиляционная система

Решив воспользоваться калькулятором, необходимо знать геометрические размеры строения, характеристики материалов, из которых сделан дом, а также их толщину. Наличие теплоизоляционного слоя и его толщина учитываются отдельно.

На основании перечисленных исходных данных онлайн калькулятор выдает общее значение тепловых потерь дома. Определить, насколько точные получены результаты можно разделив полученный результат на общий объем здания и получив при этом удельные потери тепла, величина которых должна находиться в интервале от 30 до 100 Вт.

Если цифры, полученные с помощью онлайн калькулятора, выходят далеко за пределы указанных значений, можно предположить, что в расчет закралась ошибка. Чаще всего причиной ошибок в расчетах является несоответствие размерности используемых в расчете величин.

Немаловажный факт: данные онлайн калькулятора актуальны только для домов и строений с качественными окнами и хорошо работающей системой вентиляции, в которых нет места сквознякам и иным потерям тепла.

Для уменьшения потерь тепла можно выполнить дополнительную тепловую изоляцию строения, а также использовать подогрев воздуха, поступающего в помещение.

Тепловые потери знаем, что дальше?

На следующем этапе производится выбор отопительного агрегата (котла). Его тепловая мощность должна превосходить значение тепловых потерь не менее чем на 20%. Если котел используется еще и для горячего водоснабжения, выбирается тепловой агрегат с дополнительным запасом мощности. Для этого необходимо произвести дополнительный расчет, учитывающий потребности в горячем водоснабжении.

Затем подбираются отопительные приборы, суммарная мощность которых должна соответствовать мощности котла отопления без учета горячего водоснабжения.

Гидравлический расчет системы отопления

Подобрав оборудование, необходимо обеспечить его работу. Для этого нужны трубы, циркуляционный насос и расширительный бак отопления.

Если собственник дома решит произвести подбор труб отопления самостоятельно, можно воспользоваться справочной литературой и подобрать требуемый диаметр по таблицам. Протяженность труб рассчитывается по проектной документации. Для этого на схеме строения просто прокладывается дополнительно схема разводки системы отопления и производится подсчет длины трубопровода.

Если схемы дома по какой-либо причине нет, ее придется нарисовать самостоятельно, а затем, с ее помощью, рассчитать протяженность трубопровода.

Зная протяженность трубопровода, диаметр труб и имея технические данные приборов отопления, рассчитывается внутренний объем системы отопления, по которому подбирается расширительный бак и циркуляционный насос.

Правильный гидравлический расчет необходим также для того, чтобы все тепло, вырабатываемое котлом, равномерно распределялось по дому и доходило в полном объеме до потребителя.

Подведем итоги

Количество тепла, необходимое для отопления дома, напрямую зависит от его тепловых потерь. Уменьшить тепловые потери можно с помощью дополнительной тепловой изоляции, установке качественных окон и утепленных дверей, а также при использовании рекуперации в системе вентиляции.

Величина тепловых потерь определяет мощность котла отопления. Суммарная мощность приборов отопления должна быть равна мощности котла. Для обеспечения качественной работы котла и радиаторов производится гидравлический расчет отопления, в ходе которого определяется диаметр труб, их протяженность, внутренний объем отопления. По этим данным подбирается циркуляционный насос и расширительный бак отопления.

На случай сильный морозов котел покупают с запасом мощности не менее 20%.

Потеря тепла происходит из-за:

  • проникновения холодной температуры с наружных стен помещения, через оконные щели,
  • плохой герметизации оконных рам.

Устанавливая отопительные системы, нужно учесть региональную особенность температуры за окном и исходя из полученных параметров, выбирать тот или иной вид нагревательного оборудования. Но даже самая эффективная нагревательная техника не даст желаемого результата, если не избавиться от так называемых «точек утечки тепла». При установке оконных рам следует один раз потратиться на качественные, и обладающие высоким коэффициентом сохранения тепла. Чтобы эффективно провести утеплительные работы стен, рынок теплоизоляционных материалов представляет большой выбор.

Расход тепла на отопление будет в разы уменьшаться, если работы по герметизации помещения проведены качественно. Любое современное отопительное оборудование можно регулировать, контролируя поступление теплых масс воздуха в помещение. Мощность нагревательных приборов возрастает по мере уменьшения поступлений холодного воздуха.

Для полного комфорта необходимо выполнить два условия:

  • обеспечить оптимальную температуру в помещении в 20-22 градуса;
  • разница температуры воздуха внутри помещения и наружной стены должна быть не более 4 градусов, при этом температура стены должна быть выше температуры точки росы.

Точка росы – это охлаждение наружного воздуха до начала конденсации и превращения его паров в росу. Такого легко достигнуть при наличии мощного котла. Но немаловажно при этом уменьшить расходы на отопление.

Расход тепла на отопление имеет два варианта нормы потребления:

  1. Первый – установленная норма на сопротивление теплоподачи наружных стен, оконных рам и т.д.
  2. Второй – определяется норматив расхода энергии на отопление дома. Второй способ позволяет уменьшать сопротивление теплоподаче ограждающих конструкций. Таким образом, можно выбрать оптимальную толщину стен помещения.

Профессиональные строители зачастую используют первый вариант. Воздвигая бетонные стены, им они выполняют работы по дополнительному утеплению различными теплоизоляционными материалами. Такой способ существенно усложняет процесс и повышает стоимость работ.

При построении частных домов не обязательно утеплять наружные стены, достаточно создать более утепленный слой на чердаке и в подполье. Также следует придать дому форму, которая является энергосберегающей, учитывая компактность строения. Для большего утепления к дому пристраивают веранды, лоджии, оконные рамы делают меньше по размерам и т.д. Таким образом, расход тепла на отопление во много раз уменьшается.

Ликвидировав все недостатки, можно приступать к выбору отопительного оборудования. Стоит обратить внимание на параметры отопительной системы, которая будет установлена в помещении. От качества материалов, из которых будут изготовлены теплоносители, радиаторы и котлы отопительного оборудования, зависит и состояние температуры в доме. Современные системы отопления имеют в резерве большой список новых технологически оснащенных приборов для сбережения тепла. Автоматические контроллеры для поддержания оптимальной температуры в комнате будут главными помощниками в плане расхода теплоэнергии на отопление.

При построении энергосберегающего дома или заказа уже готового проекта внимательно стоит рассмотреть вопросы по утеплению здания с привлечением опытных специалистов. Работа требует комплексного подхода и только в таком случае можно построить комфортный, теплый и уютный дом.

Радиаторы отопления и терморегуляторы

В радиаторах температура теплоносителя не должна превышать 90 градусов. При выборе мощных и стойких радиаторов такая температура вполне подходит для холодных зим. Чтобы атмосфера в комнате была приемлемой для всех, нужно установить терморегуляторы. Их существует два вида – механический и автоматический . Механический нужно постоянно регулировать вручную, не упуская момента смены тепловых величин. Открытое положение регулятора обеспечивает максимальный режим, закрытое – минимальный. При потере подачи горячей воды батарея быстро остывает.

Автоматический терморегулятор, в свою очередь, требует меньшего внимания. Достаточно зафиксировать на шкале необходимую отметку, и автомат сам подгоняет температурный уровень. Использование терморегулятора возможно только при параллельном положении труб, использование установленных друг за другом регуляторов блокирует циркуляцию теплоносителя в трубах.

Расход тепловой энергии на отопление несет в себе немалые затраты, если система отопления установлена без учета других затрат, например бойлер, кухня, ванная.

Найти «течь»

Чтобы больше сэкономить, при подведении отопительной системы нужно учесть все «больные» места утечки тепла. Не лишним будет сказать, что окна должны быть герметизированы. Толщина стен позволяет удержать теплоту, теплые полы сохраняют температурный фон на положительной отметке. Расход тепловой энергии на отопление в помещении зависит от высоты потолков, типа вентиляционной системы, строительных материалов при постройке здания.

После вычета всех теплопотерь, нужно серьезно подойти к выбору отопительного котла. Здесь главное – бюджетная часть вопроса. В зависимости от мощности и универсальности варьируется и цена прибора. Если в доме уже проведен газ, то идет экономия на электричестве (стоимость которого немалая), и вместе с приготовлением, например, ужина, заодно и прогревается система.

Еще одним моментом в сохранении тепла является тип обогревателя – конвектор, радиатор, батарея и т.д. Самое подходящее решение вопроса – радиатор , количество секций которого высчитывается при помощи несложной формулы. Одна секция (ребро) радиатора имеет мощность в 150 Вт, для комнаты в 10 метров достаточно 1700 Вт. Путем разделения получаем 13 секций, необходимых для комфортного обогрева помещения.

Установка теплых полов решит наполовину вопрос экономии энергии. По подсчетам специалистов, количество потребленной теплоэнергии сокращается в 2-3 раза. Экономный расход тепловой энергии на отопление налицо.

При установке отопительной системы путем размещения радиаторов можно сразу же подключить систему теплых полов. Постоянная циркуляция теплоносителя создает равномерную температуру во всем помещении.

При будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

Назначение здания: жилое или промышленное.

Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

Наличие комнат специального назначения (баня, сауна и пр.).

Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

Для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных - количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

Расход тепла, взятый по максимуму за один час работы системы отопления,

Максимальный поток тепла, исходящий от одного радиатора,

Общие затраты тепла в определенный период (чаще всего - сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях - в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Основные способы расчета

На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.

Три основных

  1. Для расчета берутся укрупненные показатели.
  2. За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет идущего на прогрев внутреннего объема воздуха.
  3. Рассчитываются и суммируются все входящие в систему отопления объекты.

Один примерный

Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула - Q от = q 0 * a * V H * (t ЕН - t НРО), где:

  • q 0 - удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a - поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • V H - объем, рассчитанный по внешним плоскостям.

Пример простого расчета

Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.

Предположим, что жилой дом находится в Архангельской области, а его площадь - 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.

Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 - 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

Высота потолков (стандартная - 2,7 м),

Тепловая мощность (на кв. м - 100 Вт),

Одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

Q т = 100 Вт/м 2 × S(помещения)м 2 × q 1 × q 2 × q 3 × q 4 × q 5 × q 6 × q 7 , где:

  • q 1 - тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q 2 - стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q 3 - соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% - 0.9, 10% = 0.8);
  • q 4 - уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
  • q 5 - число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q 6 - тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q 7 - высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

Примерный расчет

Условия таковы. Минимальная температура в холодное время года - -20 о С. Комната 25 кв. м с тройным стеклопакетом, двустворчатыми окнами, высотой потолков 3.0 м, стенами в два кирпича и неотапливаемым чердаком. Расчет будет следующий:

Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.

Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т 1 - Т 2) / 1000, где:

  • V - количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
  • Т 1 - число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название - энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
  • Т 2 - температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом - 15.
  • 1 000 - коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

Q от = α * q о * V * (t в - t н.р) * (1 + K н.р) * 0,000001, где


Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к строения.

Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.

Обследование проводится медленно, данные регистрируются тщательно. Схема проста.

Первый этап работ проходит внутри помещения. Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.

Второй этап - обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап - обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.

Расчет расхода теплоты на отопление . Показатель зависит от времени суток, назначения помещения и типа здания, температуры наружного воздуха, продолжительности отопительного периода, наличия в помещении нагретых поверхностей и пр.

Расход теплоты в рабочее время (МДж/ч) рассчитывают по удельным тепловым характеристикам:

В зависимости от времени суток расход теплоты на отопление (МДж/ч) промышленных предприятий определяют по формуле

Температура воздуха в помещении в рабочее время должна соответствовать рекомендациям по эксплуатации вентиляционных установок.

Часовой расход теплоты в нерабочее время определяют по формуле, используемой при расчете расхода теплоты в рабочее время, с учетом снижения температуры воздуха в помещении в нерабочее время до 5 °С.

Удельная тепловая характеристика зависит от назначения помещения и типа здания. Например, для производственных помещений, расположенных в одноэтажном корпусе, q 0 составляет 0,75—2,1 МДж/(м 3 . ч. К); для производственных помещений, расположенных в многоэтажном здании, — 0,20 — 1,05 кДжДм 3 . ч. К); для бытовых и вспомогательных помещений — 1,4 —2,5 кДжДм 3 -ч-К); для складов — 2,50 — 3,35 кДжДм 3 -ч. К); для административных зданий — 1,7 — 2,6 кДжДм 3 . ч. К).

Поправочный коэффициент а зависит от температуры наружного воздуха. Так, для общественных зданий при t H 0 = -10° С а = = 1,45; при t H 0 = -20 °С а = 1,17 и т.д.

в нерабочее время

В зависимости от наличия в помещении нагретых поверхностей поступление теплоты (МДж) рассчитывают по следующим формулам:

от нагретых поверхностей оборудования

от нагретого материала

от электропривода

В зависимости от отопительного периода расход теплоты (МДж) рассчитывают по следующим формулам: в рабочее время

Система отопления промышленных предприятий должна обеспечивать тепловой баланс между количеством теплоты, покупаемой от нагретых поверхностей технологического оборудования, нагретого материала, людей и т.д., и количеством тепловых потерь через наружные ограждения зданий.

от работающих людей

Тепловые потери через строительные ограждения помещений складываются из тепловых потерь через стены здания, покрытие, дверные и оконные проемы.

Перенос теплоты Q через стены здания и оконные проемы протекает в три стадии: от воздуха в помещении к внутренней поверхности стен зданий Q h через стены здания Q 2 и от наружной поверхности стен в окружающую среду Q 3 .

Количество теплоты, теряемой через стены здания, рассчитывают по формуле

Приближенно тепловые потери (кДж/ч) помещений определяют по формуле

Если производственный корпус имеет много окон, то целесообразно учитывать дополнительный расход теплоты на отопление исходя из тепловых потерь оконных проемов в отопительный период.

Расчет проводят по формуле

В случае если стена не аккумулирует теплоту, можно считать, что

где К — коэффициент теплопередачи, зависящий от типа остекления; F 0 K — площадь окон, м 2 ; п 0 — число дней отопительного периода; т — время работы, ч; / вн р — температура внутри здания в рабочее время, °С; *н.ср — средняя температура отопительного периода, °С.

В зависимости от типа остекления зданий коэффициент теплопередачи может иметь следующие значения, кДж/(м 2 - К): однослойное остекление — 4,5; двухслойное остекление с деревянными спаренными оконными переплетами — 2,9; двухслойное остекление с металлическими спаренными переплетами — 3,25; двухслойное остекление с деревянными раздельными переплетами — 2,67; двухслойное остекление с металлическими раздельными переплетами — 3,02.

ВВЕДЕНИЕ

Потребление тепловой энергии в России, как и во всем мире неуклонно возрастает для обеспечения инженерных систем здания и сооружений.

В данном курсовом проекте рассчитывается план застройки микрорайона города, где потребители тепловой энергии являются четыре жилых здания и одно общественное – общежитие. Данная тепловая сеть должна обеспечивать расход, необходимый для отопления и горячего водоснабжения всех зданий. Здание 2 – жилой трёхэтажный дом (он вмещает 135 человек), здание 3,4 – жилой пятиэтажный дом (он вмещает 300 человек), здание 5 – общественное здание –детский сад (он вмещает 150 человек), здание1– жилой четырехэтажный дом (он вмещает 180 человек).

Источником тепловой энергии является центральный тепловой пункт. В связи с массовым жилищным строительством возникла необходимость сооружения укрупненных, Центральных тепловых пунктов, для которых отводились специальные земельные участки, как правило, в центре жилых микрорайонов. В закрытых системах теплоснабжения тепловую мощность такого центрального теплового пункта на микрорайон или группу зданий рекомендуется принимать от 12 до 35 МВт (по сумме теплового потока на отопление и среднечасового потока на горячее водоснабжение). Системы горячего водоснабжения при закрытой системе теплоснабжения присоединяют через скоростные секционные водяные подогреватели. Каждый из них состоит из нескольких последовательно включенных секций, в которых происходит противоток сетевой и водопроводной воды. Для возможности очистки трубок от накипи и загрязнений нагреваемая водопроводная вода подается в трубки, а сетевая протекает в межтрубном пространстве.

Данную тепловую сеть можно охарактеризовать следующим образом. Тепловая сеть включает в себя снабжение тепловой энергией на отопление и горячее водоснабжение зданий.

Теплотрасса сети имеет закрытую независимую четырех трубную систему, которая состоит из трубопроводов отопления: обратного и подающего, а также трубопроводов водоснабжения горячего и циркуляционного.

Температура воды в подающем трубопроводе отопления: 130 о С , обратном – 70 о С .

Температура воды в трубопроводах горячего и холодного водоснабжения 65 о С и 5 о С. Теплосеть обеспечивает тепловой энергией пять зданий на их отопление и горячее водоснабжение.

Траса теплосети проложена в местности города Ижевска, рельеф которой повышается по направлению от источника тепловой энергии к последнему потребителю. Источником тепловой энергии тепловой сети является центральный тепловой пункт (ЦТП). Трасса имеет четырех трубную систему, которая состоит из трубопроводов отопления (подающего и обратного) и трубопроводов водоснабжения (горячего и циркуляционного)

Теплосеть обеспечивает тепловой энергией пять зданий на их отопление, вентиляцию и горячее водоснабжение.

Расчетная схема тепловой сети


Исходные параметры зданий

РАСЧЕТ РАСХОДОВ ТЕПЛОТЫ

Для расчета сетей теплоснабжения необходимо разработать расчетные схемы. Разрабатываются отдельные расчетные схемы на горячее водоснабжение и отопление, так как количество узловых точек в этих сетях не всегда совпадает. Разработку расчетных схем начинаю с определения количества секционных узлов системы горячего водоснабжения и местных тепловых пунктов системы отопления.

Количество секционных узлов горячего водоснабжения в здании либо по числу секций в здании, либо из расчета 36 квартир (ориентировочно) на один секционный узел, каждый секционный узел и каждый тепловой пункт нумеруется. Все секционные узлы соединятся между собой распределительными трубопроводами. На полученной сети расставляются узловые точки, в которых происходит разветвление потока теплоносителя. Все узловые точки нумеруются. Участки между узловыми точками являются расчетными участками. Расходы на участках между секционными узлами в зданиях и на вводах в здания определяются расчётом. Расходы на участках распределительных трубопроводов определяются суммированием расходов воды на участках, подходящих к узлу ветвления потока.

Расход теплоты на отопление

В курсовом проекте лучше всего воспользоваться методом приближённого определения расходов теплоты на отопление и вентиляцию жилых и общественных зданий по их тепловым характеристикам.
Приближённый расход теплоты на отопление жилых и общественных зданий определяют по формуле максимального часового расхода тепла:

где - максимальный часовой расход тепла на отопление здания, Вт;

Тепловая характеристика здания, Вт/(); принимается по таблице в методическом пособии;

a – коэффициент, учитывающий расход тепла на подогрев наружного воздуха, поступающего в здания путем инфильтрации через неплотности в ограждениях; принимают в расчетах a= (1.05…1.1);

К – поправочный коэффициент, учитывающий изменение расчетной наружной температуры; принимается по таблице в методическом пособии;

Объем здания по наружному обмеру, ;

Средняя температура воздуха в здании, ; принимается по нормативам;

- расчетная температура наружного воздуха для проектирования отопления, ; для Удмуртии .

Для 3-х этажного здания:

Для 4-х этажного здания:

Для 5-ти этажного здания:

Для 5-ти этажного здания:

Детский сад 2 этажа:

1.2Расход теплоты на вентиляцию
Значения расходов теплоты на вентиляцию для общественных зданий определяются по формуле:
(1.2)

где - расход теплоты на вентиляцию общественных зданий, Вт;

- вентиляционная удельная тепловая характеристика, Вт/( ); принимается по данным таблиц;

Объём здания по внешнему обмеру,

- температура внутреннего воздуха в здании, ; принимается для определенного здания по нормативам;

Расчётная температура наружного воздуха для проектирования вентиляции, ; для Удмуртии принимается ;

- поправка на расчётную температуру наружного воздуха, принимается по данным таблицы методического материала.

Для общественного здания:

1.3 Расход теплоты на горячее водоснабжение
Расход теплоты на горячее на горячее водоснабжение жилых и общественных зданий определяется по изменению энтальпии воды:

где - максимальный расход теплоты на горячее водоснабжение, Вт;

с - теплоёмкость воды; с = 4,187 кДж / (кг х ;);

- плотность воды; - 983.2 кг / м3:

- секундный расход горячей воды, л/с;

- температура горячей воды;

- температура холодной воды, .

Пояснения к калькулятору годового расхода тепловой энергии на отопление и вентиляцию.

Исходные данные для расчета:

  • Основные характеристики климата, где расположен дом:
    • Средняя температура наружного воздуха отопительного периода t o.п;
    • Продолжительность отопительного периода: это период года со средней суточной температурой наружного воздуха не более +8°C - z o.п.
  • Основная характеристика климата внутри дома: расчетная температура внутреннего воздуха t в.р, °С
  • Основная тепловая характеристики дома: удельный годовой расход тепловой энергии на отопление и вентиляцию, отнесенный к градусо-суткам отопительного периода, Вт·ч/(м2 °C сут).

Характеристики климата.

Параметры климата для расчета отопления в холодный период для разных городов России можно посмотреть здесь: (Карта климатологии) или в СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
Например, параметры для расчета отопления для Москвы (Параметры Б ) такие:

  • Средняя температура наружного воздуха отопительного периода: -2,2 °C
  • Продолжительность отопительного периода: 205 сут. (для периода со средней суточной температурой наружного воздуха не более +8°C).

Температура внутреннего воздуха.

Расчетную температуру внутреннего воздуха вы можете установит свою, а можете взять из нормативов (смотрите таблицу на рисунке 2 или во вкладке Таблица 1).

В расчетах применяется величина D d - градусо-сутки отопительного периода (ГСОП), °С×сут. В России значение ГСОП численно равно произведению разности среднесуточной температуры наружного воздуха за отопительный период (ОП) t o.п и расчетной температуры внутреннего воздуха в здании t в.р на длительность ОП в сутках: D d = ( t o.п – t в.р) z o.п.

Удельный годовой расход тепловой энергии на отопление и вентиляцию

Нормированные величины.

Удельный расход тепловой энергии на отопление жилых и общественных зданий за отопительный период не должен превышает приведенных в таблице величин по СНиП 23-02-2003 . Данные можно взять из таблицы на картинке 3 или подсчитать на вкладке Таблица 2 (переработанный вариант из [Л.1]). По ней выберите для своего дома (площадь / этажность) значение удельного годового расхода и вставьте в калькулятор. Это характеристика тепловых качеств дома. Все строящиеся жилые дома для постоянного проживания должны отвечать этому требованию. Базовый и нормируемый по годам строительства удельный годовой расход тепловой энергии на отопление и вентиляцию основаны на проекте приказа Министерства Регионального развития РФ «Об утверждении требований энергетической эффективности зданий, строений, сооружений», где указаны требования к базовым характеристикам (проект от 2009 года), к характеристикам нормируемым с момента утверждения приказа (условно обозначил Н.2015) и с 2016 года (Н.2016).

Расчетная величина.

Эта величина удельного расхода тепловой энергии может быть указана в проекте дома, её можно подсчитать на основании проекта дома, можно оценить ее размер на основе реальных тепловых измерений или размеров потребленной за год энергии на отопление. Если эта величина указана в Вт·ч/м2, то её надо разделить на ГСОП в °C сут., получившуюся величину сравнить с нормированной для дома с подобной этажностью и площадью. Если она меньше нормированной, то дом удовлетворяет требованиям по теплозащите, если нет, то дом следует утеплить.

Свои цифры.

Значения исходных данных для расчета даны для примера. Вы можете вставить свои значения в поля на желтом фоне. В поля на розовом фоне вставляете справочные или расчетные данные.

О чем могут сказать результаты расчета.

Удельный годовой расход тепловой энергии, кВт·ч/м2 - можно использовать, чтобы оценить , необходимое количество топлива на год для отопления и вентиляции. По количеству топлива можно выбрать емкость резервуара (склада) для топлива, периодичность его пополнения.

Годовой расход тепловой энергии, кВт·ч - абсолютная величина потребляемой за год энергии на отопление и вентиляцию. Изменяя значения внутренней температуры можно увидеть, как изменяется эта величина, оценить экономию или перерасход энергии от изменения поддерживаемой внутри дома температуры, увидеть как влияет неточность термостата на потребление энергии. Особенно наглядно это будет выглядеть в пересчете на рубли.

Градусо-сутки отопительного периода, °С·сут. - характеризуют климатические условия внешние и внутренние. Поделив на это число удельный годовой расход тепловой энергии вкВт·ч/м2, вы получите нормированную характеристику тепловых свойств дома, отвязанную от климатических условий (это может помочь в выборе проекта дома, теплоизолирующих материалов).

О точности расчетов.

На территории Российской Федерации происходят определенные изменения климата. Исследование эволюции климата показало, что в настоящее время наблюдается период глобального потепления. Согласно оценочному докладу Росгидромета, климат России изменился сильнее (на 0,76 °C), чем климат Земли в целом, причем самые значительные изменения произошли на европейской территории нашей страны. На рис. 4 видно, что повышение температуры воздуха в Москве за период 1950–2010 годов происходило во все сезоны. Наиболее существенным оно было в холодный период (0,67 °C за 10 лет).[Л.2]

Основными характеристиками отопительного периода являются средняя температура отопительного сезона, °С, и продолжительность этого периода. Естественно, что ежегодно их реальное значение меняется и, поэтому, расчеты годового расхода тепловой энергии на отопление и вентиляцию домов являются лишь оценкой реального годового расхода тепловой энергии. Результаты этого расчета позволяют сравнить .

Приложение:

Литература:

  • 1. Уточнение таблиц базового и нормируемого по годам строительства показателей энергоэффективности жилых и общественных зданий
    В. И. Ливчак, канд. техн. наук, независимый эксперт
  • 2. Новый СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
    Н. П. Умнякова, канд. техн. наук, заместитель директора по научной работе НИИСФ РААСН
Статьи по теме: