Собственные движения и лучевые скорости звезд. Собственное движение звезды

По небесной сфере в течение года вследствие своего движения в пространстве.

Эффект Доплера заключается в следующем. Пусть длина волны света, принимаемого от неподвижного источника, равна λ 0 .Тогда от движущегося относитель-но наблюдателя тождественного источника придёт свет с длиной волны λ = λ 0 (l + v /c ), где v — скорость по лучу зрения; c — скорость света. Лучевая скорость положи-тельна, если источник удаляется от нас; в этом случае все спектральные линии смещаются в сторону больших длин волн, т. е. к красному концу спектра.

Сфотографировав спектр звезды (или любого друго-го объекта), измерив длины волн и сравнив их с дли-нами волн в стандартном спектре неподвижного источ-ника, можно определить его лучевую скорость.

Если каким-то образом удаётся определить угол меж-ду направлениями на звезду и полной скорости v (а это ино-гда удаётся, причём сразу для группы звёзд), то приведённая формула даёт возможность определить расстояния до этих звёзд.

Если известно собственное движение звезды m в секундах дуги за год (см. § 91) и расстояние до нее r в парсеках, то не трудно вычислить проекцию пространственной скорости звезды на картинную плоскость. Эта проекция называется тангенциальной скоростью Vt и вычисляется по формуле (12.3) Чтобы найти пространственную скорость V звезды, необхо­димо знать ее лучевую скорость Vr, которая определяется по доплеровскому смещению линий в спектре звезды (§ 107). По­скольку Vr и Vt взаимно перпендикулярны, пространственная скорость звезды равна (12.4) Знание собственных движений и лучевых скоростей звезд позволяет судить о движениях звезд относительно Солнца, ко­торое вместе с окружающими его планетами также движется в пространстве. Поэтому наблюдаемые движения звезд складываются из двух частей, из которых одна является следствием движения Солнца, а другая - индивидуальным движением звезды. Чтобы судить о движениях звезд, следует найти скорость движения Солнца и исключить ее из наблюдае­мых скоростей движения звезд. Определим величину и направле­ние скорости Солнца в пространстве. Та точка на небесной сфере, к кото­рой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная ей точка - антиапексом. Чтобы пояснить прин­цип, на основании которого находят положение солнечного апек­са, предположим, что все звезды, кроме Солнца, неподвижны. В этом случае наблюдаемые собственные движения и лучевые скорости звезд будут вызваны только перемещением Солнца, происходящим со скоростью VЅ (224). Рассмотрим какую-нибудь звезду S, направление на которую составляет угол q с вектором VЅ. Поскольку мы предположили, что все звезды не­подвижны, то кажущееся относительно Солнца движение звез­ды S должно иметь скорость, равную по величине и противопо­ложную по направлению скорости Солнца, т. е.- VЅ. Эта ка­жущаяся скорость имеет две составляющие: одну - вдоль луча зрения, соответствующую лучевой скорости звезды Vr = VЅcos q, (12.5) и другую,- лежащую в картинной плоскости, соответствующую собственному движению звезды, Vt = VЅ sin q. (12.6) Учитывая зависимость величины этих проекций от угла q, получим, что вследствие движения Солнца в пространстве лу­чевые скорости всех звезд, находящихся в направлении движе­ния Солнца, должны казаться меньше действительных на величину VЅ. У звезд, находящихся в противоположном направле­нии, наоборот, скорости должны казаться больше на ту же ве­личину. Лучевые скорости звезд, находящихся в направлении, перпендикулярном к направлению движения Солнца, не изме­няются. Зато у них будут собственные движения, направленные к антиапексу и по величине равные углу, под которым с рас­стояния звезды виден вектор VЅ. По мере приближения к апек­су и антиапексу величина этого собственного движения умень­шается пропорционально sin q, вплоть до нуля. В целом создается впечатление, что все звезды как бы убе­гают в направлении к антиапексу. Таким образом, в случае, когда движется только Солнце, величину и направление скорости его движения можно найти двумя способами: 1) измерив лучевые скорости звезд, на­ходящихся в разных направлениях, найти то направление, где лучевая скорость имеет наибольшее отрицательное значение; в этом направлении и находится апекс; скорость движения Солн­ца в направлении апекса равна найденной максимальной луче­вой скорости; 2) измерив собственные движения звезд, найти на небесной сфере общую точку, к которой все они направлены: противоположная ей точка будет апексом; для определения величины скорости Солнца надо сначала перевести угловое пе­ремещение в линейную скорость, для чего необходимо выбрать звезду с известным расстоянием, а затем найти VЅ по формуле (12.6). Если теперь допустить, что не только Солнце, но и все дру­гие звезды имеют индивидуальные движения, то задача услож­нится. Однако, рассматривая в данной области неба большое количество звезд, можно считать, что в среднем индивидуаль­ные их движения должны скомпенсировать друг друга. Поэтому средние значения собственных движений и лучевых скоростей для большого числа звезд должны обнаруживать те же законо­мерности, что и отдельные звезды в только что рассмотренном случае движения одного только Солнца. Описанным методом установлено, что апекс Солнечной си­стемы находится в созвездии Геркулеса и имеет прямое вос­хождение a = 270ё и склонение d = +30ё. В этом направлении Солнце движется со скоростью около 20 км/сек.

Звездочки ясные, звезды высокие!
Что вы храните в себе, что скрываете
Звезды, таящие мысли глубокие,
Силой какою вы душу пленяете?
Частые звездочки, звездочки тесные!
Что в вас прекрасного, что в вас могучего?
Чем увлекаете, звезды небесные,
Силу великую знания жгучего?
С. А Есенин

Урок 6/23

Тема: Пространственная скорость звезд

Цель: Познакомить с движением звезд - пространственной скоростью и ее составляющими: тангенциальная и лучевая, эффектом (законом) Доплера.

Задачи :
1. Обучающая : ввести понятия: собственного движения звезд, лучевой и тангенциальной скорости. Вывести формулу определения пространственной и тангенциальной скорости звезд. Дать представление об эффекте Доплера.
2. Воспитывающая : обосновать вывод о том, что звезды движутся и как следствие со временем изменяется вид звездного неба, гордость за российскую науку - исследования российского астронома А.А. Белопольского, содействовать формированию таких мировоззренческих идей, как причинно-следственные связи, познаваемость мира и его закономерностей.
3. Развивающая : умение определять направление (знак) лучевой скорости, формирование умения анализировать материал, содержащийся в справочных таблицах.

Знать:
1-й уровень (стандарт) - понятие скоростей: пространственной, тангенциальной и лучевой. Закон Доплера.
2-й уровень - понятие скоростей: пространственной, тангенциальной и лучевой. Закон Доплера.
Уметь:
1-й уровень (стандарт) - определять скорости движения звезд, направление движения по смещению линий в спектре звезды.
2-й уровень - определять скорости движения звезд, направление движения по смещению линий в спектре.

Оборудование: Таблицы: звезды, карта звездного неба (настенная и подвижная), звездный атлас. Диапозитивы. CD- "Red Shift 5.1", фотографии и иллюстрации астрономических объектов из Интернета, мультимедийного диска «Мультимедиа библиотека по астрономии»

Межпредметные связи: математика (совершенствование вычислительных навыков в нахождении десятичных логарифмов, разложение вектора скорости на составляющие), физика (скорость, спектральный анализ).

Ход урока:

Опрос учащихся.

У доски:
1) Параллактический способ определения расстояния.
2) Определить расстояние через блеск ярких звезд..
3) Решение задач из домашней работы №3, №4, №5 из §22 (стр. 131, №5 аналог дополнительного задания 2, урока 22) - показать решения.
Остальные:
1) На компьютере найти яркие звезды и охарактеризовать их.
2) Задача 1: Во сколько раз Сириус ярче чем Альдебаран? { зв. величину возьмем из табл. XIII, I 1 / I 2 =2,512 m 2 -m 1 , I 1 / I 2 =2,512 0,9+1,6 =1 0}
3) Задача 2: Одна звезда ярче другой в 16 раз. Чему равна разность их звездных величин? {I 1 / I 2 =2,512 m 2 -m 1 , 16=2,512 ?m , ?m ≈ 1,2/0,4=3}
4) Задача 3: Параллакс Альдебарана 0,05". Сколько времени свет от этой звезды идет до нас? {r=1/π, r=20пк=65,2 св.г

Новый материал.
В 720г И. Синь (683-727, Китай) в ходе углового изменения расстояния между 28 звездами, впервые высказывает догадку о перемещении звезд. Дж. Бруно также утверждал, что звезды движутся.
В 1718г Э. Галлей (Англия) открывает Собственное движение звезд , исследуя и сравнивая каталоги Гиппарха (125г до НЭ) и Дж. Флемстида (1720г) установил, что за 1900 лет некоторые звезды переместились: Сириус (α Б.Пса) сместившийся к югу почти на полтора диаметра Луны, Арктур (α Волопаса) на два диаметра Луны к югу и Альдебаран (α Тельца) сместившийся на 1/4 диаметра Луны к востоку. Впервые доказывает, что звезды - далекие Солнца. Первой звездой, у которой он в 1717г обнаружил собственное движение была Арктур (α Волопаса), находящуюся в 36,7 св.г.
Итак, звезды движутся, т. е меняют со временем свои координаты. К концу 18 века измерено собственное движение 13 звезд, а В. Гершель в 1783г открыл, что наше Солнце также движется в пространстве.

Пусть m - угол, на который сместилась звезда за год (собственное движение - "/ год).
Из рисунка по теореме Пифагора υ= √(υ r 2 +υ τ 2) , где υ r - лучевая скорость (по лучу зрения), а υ τ - тангенциальная скорость (^ лучу зрения).
Так как r =a , то с учетом смещения m ® r . m =a . m/π ; но r . m / 1год=u , тогда подставляя числовые данные получим тангенциальную скорость υ τ =4,74 . m/π (форм. 43)
Лучевую скорость υ r определяют по эффекту Х. Доплера (1803-1853, Австрия) (радиальной (лучевой в астрономии) скорости), установившего в 1842г, что длина волны источника изменяется в зависимости от направления движения. Применимость эффекта к световым волнам была доказана в 1900 в лабораторных условиях А. А. Белопольским . υ r =?λ . с/λ о.
Приближение источника - смещается к Фиолетовому (знак "- ").
Удаление источника - смещается к Красному (знак "+ ") .
Первым измерил лучевые скорости нескольких ярких звезд в 1868г Уильям Хеггинс (1824 - 1910, Англия). С 1893г впервые в России Аристарх Аполлонович Белопольский (1854 - 1934) приступил к фотографированию звезд и проведя многочисленные точные измерения лучевых скоростей звезд (один из первых в мире взяв эффект Доплера на вооружение), изучая их спектры, определил лучевые скорости 220 ярких (2,5-4 m) звезд.

Самая быстро перемещающаяся по небу звезда ß Змееносца (летящая Барнарда , Звезда Барнарда , HIP 87937, открыта в 1916г Э. Барнард (1857-1923, США)), m =9,57 m , r =1,828 пк, m =10,31 " , красный карлик. Существует у звезды спутник в М=1,5М Юпитера, или планетная система. У ß Змееносца лучевая скорость=106,88км/с, пространственная (под углом 38 °)=142км/с. После измерения собственных движений > 50000 звезд, выяснилось, что самая быстрая звезда неба в созвездии Голубя (m Col) имеет пространственную скорость=583км/с.
На ряде обсерваторий мира, располагающих крупными телескопами, в том числе еще в СССР (на Крымской астрофизической обсерватории АН СССР), ведутся многолетние определения Лучевая скорость звёзд. Измерения Лучевая скорость звёзд в галактиках позволили обнаружить их вращение и определить кинематические характеристики вращения галактик, а также нашей Галактики. Периодические изменения Лучевой скорости некоторых звёзд позволяют обнаружить их движение по орбите в двойных и кратных системах, а когда определить их орбиты, линейные размеры и расстояние до звезды.
Дополнение .
Двигаясь, звезда со временем меняет свои экваториальные координаты, поэтому собственное движение звезды можно по экваториальным координатам разложить на составляющие и получим m =(m a 2 + m δ 2 ). Изменение же координат звезды за год в астрономии определяют по формулам: Δα=3,07 с +1,34 с sinα . tanδ и Δδ=20,0" . cosα
III. Закрепление материала.
1. Пример №10 (стр. 135) - просмотреть
2.Самостоятельно: Из предыдущего урока для своей звезды найти пространственную скорость (взяв из таблицы XIII расстояние) и из данной таблицы m и υ r . Найти по ПКЗН и определить координаты звезды.

Решение: (последовательность) Так как υ= √(υ r 2 +υ τ 2) , сперва находим π =1/r, затем υ τ =4,74 . m /π , а только теперь находим υ= √(υ r 2 +υ τ 2)
3.
Итог:
1. Что такое собственное движение звезды?
2. Какую скорость мы называем пространственной, тангенциальной, лучевой? Как они находятся?
3. В чем заключается эффект Доплера?
4. Оценки.

Дома: §23, вопросы стр. 135

Урок оформила член кружка "Интернет-технологии" Леоненко Катя (11 кл), 2003 год.

«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".
Планетарий 2,67 мб Данный ресурс представляет собой интерактивную модель "Планетарий", которая позволяет изучать звездное небо посредством работы с данной моделью. Для полноценного использования ресурса необходимо установить Java Plug-in
Урок Тема урока Разработки уроков в коллекции ЦОР Статистическая графика из ЦОР
Урок 23 Пространственная скорость звезд Смещение звезд за 100 лет 158,9 кб
Измерение угловых смещений звезд 128,6 кб
Собственное движение звезды 128,3 кб
Компоненты собственного движения звезды 127,8 кб
Лучевая и тангенциальная скорости 127,4 кб

Как показывают наблюдения и расчеты, звезды движутся в пространстве с большими скоростями вплоть до сотен километров в секунду. Скорость, с которой звезда движется в пространстве, называется пространственной скоростью этой звезды.

Пространственная скорость V звезды разлагается на две составляющие: лучевую скорость звезды относительно Солнца V r (она направлена по лучу зрения) и тангенциальную скорость V t (направлена перпендикулярно лучу зрения). По­скольку V r и V t взаимно перпендикулярны, пространственная скорость звезды равна

Лучевая скорость звезды определяется по доплеровскому смещению линий в спектре звезды. Но непосредственно из наблюдений можно найти лучевую скорость относительно Земли v r :

где l и l ¤ - эклиптические долготы соответственно звезды и Солнца, b - эклиптическая широта звезды (см. § 1.9). Соотношение (6.3) указывает на то, что для нахождения V r необходимо из скорости v r исключить проекцию скорости обращения Земли вокруг Солнца v Å = 29,8 км/с на направление к звезде.

Наличие тангенциальной скорости звезды V t приводит к угловому смещению звезды по небу. Смещение звезды на небесной сфере за год называется собственным движением звезды m . Оно выражается в секундах дуги в год.

Собственные движения у разных звезд различны по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1" в год. Самое большое известное собственное движение m = 10”,27 (у “летящей” звезды Барнарда). Громадное же большинство измеренных собственных движений у звезд составляют сотые и тысячные доли секунды дуги в год. Из-за малости собственных движений изменение видимых положений звезд не заметно для невооруженного глаза.

Выделяют две составляющие собственного движения звезды: собственное движение по прямому восхождению m a и собственное движение по склонению m d . Собственное же движение звезды m вычисляется по формуле

Зная обе составляющие V r и V t , можно определить величину и направление пространственной скорости звезды V .

Анализ измеренных пространственных скоростей звезд позволяет сделать следующие выводы.



1) Наше Солнце движется относительно ближайших к нам звезд со скоростью около 20 км/с по направлению к точке, расположенной в созвездии Геркулеса. Эта точка называется апексом Солнца.

2) Кроме этого, Солнце вместе с окружающими звездами движется со скоростью около 220 км/с по направлению к точке в созвездии Лебедя. Это движение есть следствие вращения Галактики вокруг собственной оси . Если подсчитать время полного оборота Солнца вокруг центра Галактики, то получается примерно 250 млн лет. Этот промежуток времени называется галактическим годом .

Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса, находящегося в созвездии Волосы Вероники. Угловая скорость вращения зависит от расстояния до центра и убывает по мере удаления от него.

СОБСТВЕННОЕ ДВИЖЕНИЕ ЗВЕЗДЫ

СОБСТВЕННОЕ ДВИЖЕНИЕ ЗВЕЗДЫ , видимое перемещение звезды на НЕБЕСНОЙ СФЕРЕ в результате ее движения относительно Солнца. В большинстве случаев это перемещение составляет менее 0,1 угловой секунды. Самое большое собственное движение имеет ЗВЕЗДА БАРНАРДА (10,3 угловых секунды в год). Собственное движение звезды определяется путем сравнения позиции звезды на фотографических пластинках, заснятых с большим промежутком времени, обычно равным годам или десятилетиям. Гораздо более точные измерения собственного движения звезд были получены измерительным спутником «Гиппарх».


Научно-технический энциклопедический словарь .

Смотреть что такое "СОБСТВЕННОЕ ДВИЖЕНИЕ ЗВЕЗДЫ" в других словарях:

    Угловое перемещение звезды по небесной сфере за год. Наблюдается у ближайших звезд … Большой Энциклопедический словарь

    Угловое перемещение звезды по небесной сфере за год. Наблюдается у ближайших звёзд. * * * СОБСТВЕННОЕ ДВИЖЕНИЕ ЗВЕЗДЫ СОБСТВЕННОЕ ДВИЖЕНИЕ ЗВЕЗДЫ, угловое перемещение звезды по небесной сфере за год. Наблюдается у ближайших звезд … Энциклопедический словарь

    Угловое перемещение звезды по небесной сфере за год. Наблюдается у ближайших звёзд … Естествознание. Энциклопедический словарь

    Собственным движением называются изменения координат звёзд на небесной сфере, вызванные относительным движением звёзд и Солнечной системы. В них не включают периодические изменения, вызванные движением Земли вокруг Солнца (параллакс). Более… … Википедия

    Cкорость углового перемещения объекта (звезды) на небесной сфере относительно неподвижной в пространстве системы координат. На практике определяется по изменению положения звезды относительно значительно более далеких звезд или галактик.… … Астрономический словарь

    См. Звезды … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    С запада на восток. попятное (обратное) с востока на запад. звезды собственное движение звезды по небесной сфере относительно окружающих ее более далеких звезд … Астрономический словарь

    Горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к… … Энциклопедия Кольера

    Иллюстрация показывает вид сплюснутой звезды Ахернар, вызванный быстрым вращением. Вращение звезды угловое движение звезды вокруг своей оси. Скорость вращения может быть измерена по смещению линий в её спектре или по времени … Википедия

    Основная статья: Звёздная эволюция Формирование звезды процесс, которым плотные части молекулярных облаков коллапсируют в шар плазмы, чтобы сформировать звезду. Эволюция звезды начинается в гигантском молекулярном облаке, также называемым… … Википедия

Статьи по теме: