Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении. Вихревой кавитационный теплогенератор

С каждым годом подорожание отопления заставляет искать более дешевые способы обогрева жилой площади в холодную пору года. Особенно это относится к тем домам и квартирам, которые имеют большую квадратуру. Одним из таких способов экономии является вихревой . Он имеет массу преимуществ, а также позволяет экономить на создании. Простота конструкции не затруднит его сбор даже у новичков. Далее рассмотрим преимущества такого способа отопления, а также попытаемся составить план-схему по сбору теплогенератора своими руками.

Теплогенератор – это специальный прибор, основная цель которого вырабатывать тепло, путем сжигания, загружаемого в него, топлива. При этом вырабатывается тепло, которое затрачивается на обогрев теплоносителя, который уже в свою очередь непосредственно выполняет функцию обогрева жилой площади.

Первые теплогенераторы появились на рынке еще в 1856 году, благодаря изобретению британского физика Роберта Бунзена, который в ходе ряда проведенных опытов заметил, что вырабатываемое при горении тепло можно направлять в любое русло.

С тех пор генераторы, конечно же, модифицировались и способны обогревать гораздо больше площади, нежели это было 250 лет назад.

Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды :

  1. Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
  2. Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
  3. Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
  4. – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.

Изобретение относится к комбинированным системам для нагрева и охлаждения. Внутренняя поверхность камеры энергетического разделения выполнена со спиралью. Толщина спирали составляет (0,05-0,3)D, где D - диаметр внутренней поверхности камеры энергоразделения. Шаг спирали может соответствовать пространственному периоду завихренного входного потока в осевом направлении камеры, а направление навивки спирали противоположно направлению вращения входного потока. Использование изобретения позволит повысить эффективность энергетического разделения потока в вихревой трубе. 1 з.п. ф-лы, 1 ил.

Изобретение относится к комбинированным системам для нагрева и охлаждения и может использоваться в различных областях науки и техники, в частности в системах воздушного охлаждения (нагрева). Известна вихревая труба, содержащая камеру энергетического разделения, завихритель входного потока, диафрагму вывода охлажденного потока и дроссельный кран, установленный на выходе нагретого потока . Однако эффективность энергетического разделения потока (другими словами, холодопроизводительность) для этой трубы невелика. Наиболее близким техническим решением является вихревая труба, содержащая камеру энергетического разделения, завихритель входного потока, диафрагму вывода охлажденного потока и дроссельный кран, установленный на выходе нагретого потока . Однако эффективность энергетического разделения потока (другими словами, холодопроизводительность) для этой трубы невелика. Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении эффективности энергетического разделения потока в вихревой трубе (в повышении холодопроизводительности). Этот результат достигается тем, что в вихревой трубе, содержащей камеру энергетического разделения, завихритель входного потока, диафрагму вывода охлажденного потока и дроссельный кран, установленный на выходе нагретого потока, внутренняя поверхность камеры снабжена спиралью. В частности, шаг спирали может соответствовать пространственному периоду завихренного входного потока в осевом направлении камеры, причем направление навивки спирали противоположно направлению вращения входного потока. На чертеже представлена схема вихревой трубы. Вихревая труба содержит камеру 1 энергетического разделения потока с внутренней поверхностью 2, завихритель 3, диафрагму 4 вывода охлажденного потока, дроссельный кран 5, установленный на выходе нагретого потока. На внутренней поверхности 2 камеры 1 установлена спираль 6, шаг которой соответствует пространственному периоду завихренного входного потока в осевом направлении камеры, а направление навивки спирали противоположно направлению вращения входного потока. В частности, шаг спирали может быть переменным, например, увеличиваясь с удалением от завихрителя. Толщина спирали 6 (соответствующий размер в радиальном направлении) составляет (0,05-0,3)D, где D - диаметр внутренней поверхности 2 камеры 1. В частности, сечение спирали может представлять собой круг (см. чертеж). В этом случае толщина спирали равна диаметру проволоки, из которой навита эта спираль. Работает вихревая труба следующим образом. Входной поток (от внешнего источника, на чертеже не показанного) под давлением в несколько атмосфер поступает в завихритель 3, обеспечивающий формирование закрученной (завихренной) струи в камере энергетического разделения 1. За счет эффекта Ранка в камере 1 периферийная (пристеночная) область потока нагревается, а центральная (приосевая) охлаждается. Пространственное разделение охлажденного и нагретого потоков осуществляется с помощью дроссельного крана 5 и диафрагмы 4. Отметим, что на чертеже представлена схема так называемой противоточной трубы , но возможна несколько иная компоновка, соответствующая прямоточной трубе. В периферийной области камеры 1 закрученная струя имеет спиралеобразный вид , причем шаг спирали, вообще говоря, увеличивается с удалением от завихрителя (в ряде работ вместо характеристики "шаг" используют "угол наклона спирали"). При некотором частичном перекрытии крана 5 в приосевой области камеры 1 формируется возвратный поток холодного (точнее, охлажденного) воздуха, который выходит из трубы через диафрагму 4. Проведенные эксперименты показали, что введение в вихревую трубу спирали, выполненной указанным образом, при неизменном давлении входного потока позволяет в несколько раз повысить расход воздуха через диафрагму 4 и на несколько градусов понизить температуру холодного воздуха, т.е. в несколько раз повысить холодопроизводительность вихревой трубы. При этом форма спирали и ее положение в камере 1 подбирались экспериментально. К настоящему времени этот эффект в литературе не описан, отсутствует и его теоретическое объяснение. Одна из возможных гипотез, объясняющих эффект спирали, состоит в следующем. Согласно литературным данным входной (периферийный) поток в камере 1 представляет собой свободный (или комбинированный) вихрь, у которого максимум тангенциальной скорости находится на расстоянии 0,6-0,9 R от оси камеры 1 (R - радиус внутренней поверхности 2 камеры 1, 2R=D), Поток холодного воздуха представляет собой вынужденный вихрь, диаметр которого (в зависимости от давления на входе и т.д.) составляет (0,1-0,5)D. Спираль расположена в области внешнего вихря, там, где тангенциальная скорость максимальна. Этот вихрь (его ось) прецессирует во времени нерегулярным образом , причем направление прецессии противоположно направлению вращения вихря. Соответственно, направление прецессии совпадает с направлением навивки спирали. В результате взаимодействия вихря со спиралью прецессия в определенной мере стабилизируется в пространстве и времени. При этом улучшаются условия для разделения потоков холодного и горячего воздуха. Помимо этого, возможно, что при указанных параметрах и ориентации спирали происходит более интенсивный обмен турбулентными "микровихрями" между периферийным и приосевым потоками воздуха, в частности, за счет генерации "микровихрей" определенного размера. Все это в совокупности приводит к повышению эффективности переноса тепла от приосевого (холодного) потока к периферийному (горячему) потоку, т.е. к дополнительному охлаждению приосевого потока. Таким образом, введение спирали указанной формы позволяет повысить холодопроизводительность вихревой трубы. Источники информации 1. Меркулов А.П. Вихревой эффект и его применение в технике. М.: Машиностроение, 1969. - 184 с. 2. Гуцол А.Ф. Эффект Ранка. Успехи физических наук, 1997. - Том 167, 6. - С.665-687. 3. Патент РФ 2067266, кл. F 25 B 9/02, 1996. 4. Патент РФ 2170892, кл. F 25 B 9/04, 2001.

Формула изобретения

1. Вихревая труба, содержащая камеру энергетического разделения, завихритель входного потока, диафрагму вывода охлажденного потока и дроссельный кран, установленный на выходе нагретого потока, отличающаяся тем, что внутренняя поверхность камеры снабжена спиралью, причем толщина спирали составляет (0,05-0,3)D, где D-диаметр внутренней поверхности камеры энергетического разделения. 2. Вихревая труба по п. 1, отличающаяся тем, что шаг спирали соответствует пространственному периоду завихренного входного потока в осевом направлении камеры, а направление навивки спирали противоположно направлению вращения входного потока.

В основе работы вихревой трубы лежит т.н. эффект Ранка-Хилша (1933 г). Вихревая труба представляет собой газодинамическое устройство с тангенциальным входом газа, рис. 2.3.1.

Рис. 2.3.1. Схема вихревой трубы.

Как известно, в закрученных потоках вязкого газа при наличии поперечного градиента скорости поверхности тока взаимодействуют между собой из-за наличия касательных сил вязкости. Работа, затраченная на преодоление этих сил преобразуется в тепло. При этом разные струйки могут обладать разными запасами полной энергии

.

Наличие в потоке градиента температур предопределяет теплообмен между слоями газа. Однако, большой вклад в перераспределение полной энергии принадлежит турбулентному механизму переноса.

Вихревая труба состоит из корпуса, выполненного в виде цилиндрической или диффузорной трубы с диаметром начального сечения и длиной , тангенциально расположенных по отношению к корпусу вводных сопел с площадью проходного сечения , диафрагмы с диаметром отверстия , расположенной вблизи соплового входа, и конического регулировочного вентиля на противоположном от диафрагмы конце корпуса.

Интенсивность энергетического разделения газов в вихревой трубе обычно оценивают по зависимости величин избыточных температур газа и от доли охлажденного потока . При этом

,

где - температура торможения на входе в вихревую трубу, на выходе из нее охлажденного и горячего потоков соответственно;

и - массовые расходы исходного и охлажденного потоков газа соответственно.

Рис. 2.3.2. Температура газа на выходе из ВТ.

Типичные экспериментальные зависимости величин и от относительного расхода холодного потока приведены на рисунке 2.3.2.(195).

Обычно каждой паре кривых соответствуют определенные условия проведения экспериментов: отношение давлений газа на входе в вихревую трубу и выходе охлажденного потока из диафрагмы , температура газа на входе в вихревую трубу , безразмерная площадь вводных сопел и др.

Эффект энергетического разделения газа неразрывно связан с перестройкой затухающего вихревого турбулентного движения и происходит в довольно протяженной области течения, простирающейся от соплового входа на расстояние от одного до нескольких десятков диаметров вихревой трубы. При большой длине области происходящие в ней явления не будут определяться детальной структурой потока на входе в вихревую трубу и должны зависеть от переменных, характеризующих течение в целом. т.е. от интегральных величин, таких как массовый расход поступающего в трубу газа , поток импульса в направлении оси трубы , поток энергии и массовый расход отбираемого через отверстие диафрагмы холодного газа . К этим интегральным характеристикам, необходимо, добавить характерный размер - диаметр трубы .

Следует отметить, что поток газа в вихревой трубе является развитым турбулентным потоком. Можно предположить, что турбулентность, возбуждаемая струями, истекающими из вводных сопел вихревой трубы, имеет высокий уровень, превышающий во всей области энергетического разделения уровень турбулентности, порождаемый в пограничном слое на стенках трубы.

Рабочая величина давления на входе в вихревую трубу может меняться в широких пределах; по имеющимся данным вихревая труба устойчиво работает при полном давлении на входе 0,5-0,7 МПа, известны эксперименты с пропусканием через ВТ газа с давлением до 25 МПа. Температура теплого и холодного потоков зависит от начальной температуры газа на входе; рисунок дает представление о перепаде температур в потоках; этот перепад, как правило, сохраняется. Потери энергии в ВТ связаны с трением высокоскоростного газового потока о стенки.

Таким образом, вихревая труба является весьма удобным инструментом для получения высокотемпературных (+60, +800С) и низкотемпературного (-20, -400С) газовых потоков, которые можно использовать для отопительных целей и холодильной техники.

В настоящее время вихревая техника широко внедрена в промышленность: вихревые управляющие клапаны в системах управления тягой ракетных двигателей, вихревые холодильники, вихревые системы очистки, осушки газа в газовой промышленности, вихревые системы газоподготовки для нужд пневмо-газоавтоматики.

Откуда «растут ноги» у вихревого смесителя

Демон Максвелла

Физик Максвелл предложил миру интересную идею. Он провел такой мысленный эксперимент. Пусть имеется два сосуда с комнатным воздухом, соединенных друг с другом. Как известно, в обоих сосудах есть быстрые («горячие») молекулы, а есть менее подвижные холодные молекулы - все, как и описано в уравнении Максвелла. Предположим, что в месте соединения сосудов есть плотная дверка, у которой стоит сторож-швейцар. Сторож-швейцар пропускает в один избранный сосуд только быстрые молекулы, а обратно выпускает только медленные. Немного поработав, этот швейцар добьется того, что из избранного сосуда сбегут все медленные – холодные - молекулы, а соберутся быстрые - горячие. Процесс приведет к нагреванию одного сосуда и охлаждению другого.

(рисунок не мой – нашел в интернете)
Этого сторожа-швейцара окрестили физики демоном Максвелла и доказали невозможность его существования на основе постулата второго закона термодинамики. Этот постулат гласит о том, что мера энтропии (хаоса) может только возрастать (быть больше нуля) в закрытой замкнутой системе.

Трубка Ранка-Хильша

Потом появился Ранк с очень странным приборчиком – небольшой трубочкой, с одной стороны, которой выходил холодный воздух, а с другой – горячий. Никаких подогревателей или охладителей у трубки Ранка не было. А роль демона Максвелла играл обычный воздух, который не стоял в дверях как швейцар, а подавался внутрь с некоторой скоростью в трубку по касательной. Ранк не понимал, как его трубка работает, а другие ученые, похоже и вовсе не приняли странного изобретателя, так как факт существования такой трубки разрушал устоявшееся в науке представление. Хильш смог как-то улучшить работу этого приспособления, который сегодня известен как трубка Ранка-Хильша.


Рис. Схема трубки Ранка-Хильша. Голубая стрелка – подача воздуха по касательной. Темно-синяя стрелка – выход холодного воздуха. Красная стрелка – выход горячего воздуха.

Разница температур на выходе между двумя концами трубки Ранка может достигать 80 градусов при комнатной температуре и зависит от скорости подачи воздуха, как и от геометрии трубки.
Очень скоро выяснился экспериментальный факт: внутри трубки Ранка воздух ведет себя не как квазитвердое тело, как это думали. В трубке Ранка поток разделяется на два слоя, вращающиеся в разном направлении. Слой снаружи вращается в ту сторону, куда направлен воздух первоисточник. Слой по центру вращается в противоположную сторону. Что за чудеса!

С какой это стати и перепугу?...
Попробуем порисовать...
Нарисуем опять разрез трубки Ранка. По направлению голубой стрелки подаем воздух. Тогда в том месте, где нарисован синий круг у нас появится зона пониженного давления. В сторону этой зоны будет отклоняться поток - появится завихрение.

Ну у меня это так получилось нарисовать для одного вихря, ...пусть и неказисто...
Если объединить вихри в полный цикл, то картина может выглядеть так, как на рисунке Шауберга (которая рисовалась немецким ученым не для случая трубки Ранка). Синей стрелкой я нарисовал подачу воздуха-источника. На рисунке видно, как вихрь, пробегающий по контуру трубки, усиливает вращение во внешнем слое и закручивает поток в центре в противоположном направлении.

Рисунок Шауберга с моими цветными дополнениями

Есть предположение, что аналогичная схема присутствует в природном явлении торнадо. Во всяком случае, в центре торнадо, отмечают пониженную температуру, подобно тому, как это мы видим в трубке Ранка и вращается шнур торнадо в противоположную сторону от вращения периферии. Если это так, то нам должен быть интересен факт заниженного давления в центре торнадо. Это разряжение затягивает в себя как в воронку перефирию смерча.

Ведерко Ньютона

Похожие картинки получили датчане во время экспериментов с ведерком Ньютона (цилиндр у которого вращается дно, а стенки неподвижны).


При достаточно большой скорости вращения донышка на поверхности воды возникали вихревые образования. Получали вихревые образования в виде вращающихся многоугольников (от треугольников до шестиугольников). Когда ученые заменили воду этиленгликолем, в результате вращения на поверхности жидкости стали образовываться деформации треугольной формы, а на углах многоугольников образовывались вихри. Отчего так происходит – не известно, объяснить результаты сами экспериментаторы пока не могут. Но можно только отметить, что среда расслоилась и по центру появилось устойчивое вихревое образование – воронка правильной, чаще всего, пятиугольной формы.

Теоретические и практические предпосылки

Теория горения и взрыва выявила некоторые интересные закономерности.

1.Академик Н.Н.Семенов в 1926-1927 гг. создал тепловую теорию самовоспламенения горючих газов. При температурах, лежащих ниже температуры самовоспламенения, в газе с небольшой скоростью идёт химическая реакция, а теплоотвод через стенку в наружную среду компенсирует теплоприход от реакции. С увеличением температуры скорость реакции растёт и создаются условия, когда теплоотвод не успевает компенсировать теплоприход и развивается тепловая лавина.

2.«Опытные данные и теоретическое рассмотрение свидетельствуют о том, что при распространении пламени реакция идет в каждый момент времени в сравнительно (по сравнению с размерами камер сгорания) тонком слое - зоне реакции. В непосредственной близости от зоны реакции, также в тонком слое, происходит разогрев несгоревшей смеси. Поэтому в первом приближении распространение пламени можно представить себе так: имеются две области - несгоревшего газа и продуктов реакции, разделенные поверхностью горения, толщиной которой можно пренебрегать и рассматривать ее как геометрическую поверхность, движущуюся относительно газа с известной скоростью - нормальной скоростью распространения пламени». Зельдович Я.Б на примере реакции водорода с кислородом обнаружил три предела воспламенения, которые проиллюстрировал в виде диаграммы «давление - температура»

Рис 1.0
«Пределы воспламенения стехиометрической смеси водорода с кислородом приведены на рис. 1.0. Если начальным давлению и температуре смеси отвечает точка, лежащая справа от кривой ABCD4 то происходит воспламенение; участок AB соответствует первому, ВС - второму и CD - третьему пределам воспламенения. Область между первым и вторым пределами называют полуостровом воспламенения.»

3. «Достаточно быстрое сгорание, при котором скорость пламени достигает сотен м/сек, происходит при турбулизации газовой смеси и соответственно, при турбулизации фронта пламени. Турбулизация вызывает значительное разрастание фронта пламени, ускорение теплообмена между продуктами сгорания и исходной смесью и, соответственно, горения.»

4. Академик М. А. Стырикович описал такие установи для сжигания угля


«В топке одновременно идут три взаимосвязанных процесса: гидродинамический процесс подачи со значительными скоростями (часто в закрученном виде) потоков воздуха и угольной пыли, процесс воспламенения. Обычно горелки располагаются на двух противоположных стенах топочной камеры в несколько ярусов (см. рис. 1), так что приходится учитывать и взаимодействие отдельных горелок между собой. При таком их расположении очень трудно обеспечить равномерность температуры по всему громадному сечению топки, а любая неравномерность может привести к шлакованию ширм или конвективных поверхностей. Более равномерное распределение температуры достигается при размещении горелок тангенциально по углам топки - так, что они создают в ней общий закрученный вихрь (рис. 2). Здесь уже не только каждая отдельная горелка порождает вихревой поток, но и вся совокупность горелок образует единый вихрь. Очевидно, что такую сложную геометрию потока рассчитать и реализовать весьма непросто»

5. широкое распространение на нефтепромыслах нашли вихревые излучатели (генераторы волн давления). Внешне генератор похож на трубку Ранка, но в отличие от трубки Ранка у него нет обратного выхода, а прямой выход открытый


"Генератор представляет собой корпус с цилиндрической камерой (камерой завихрения), с тангенциальным каналом (одним или несколькими) для подачи рабочей жидкости и соплом для выхода рабочей жидкости. Генератор работает следующим образом . При подаче жидкости через тангенциальное отверстие 2 диаметром d (см. рис. 1.3) внутри камеры завихрения 3 и выходного сопла 4 генератора образуется система двух закрученных потоков. По периферии камеры движется так называемый первичный вихрь (I), имеющий в попе- речном сечении форму кольца с наружным радиусом R = D/2 и внутренним rm. Этот поток состоит из рабочей жидкости, подаваемой в генератор. Приосевую область вихревой камеры занимает вторичный вихрь (II), вращающийся как квазитвёрдое тело. Он образуется вследствие вовлечения в движение первичным потоком жидкости из окружающей среды, в которую происходит истечение жидкости из генератора. Опыт показывает, что в случае незатопленного истечения струи жидкости (например, при истечении её в газообразную среду) движение устойчиво и пульсации давления и скорости в потоке отсутствуют. Если же истечение закрученной струи затопленное, т.е. рабочая жидкость в вихревой камере и вещество окружающей среды имеют одну и ту же физическую природу, то в потоке генерируются регулярные пульсации давления, частота и амплитуда которых зависит от скорости истечения и геометрических параметров камеры завихрения, её конструкции и формы сопла. В окружающей среде пульсации давления фиксируются как звук дискретного тона и значительной интенсивности."
"Причиной звуковых колебаний является прецессионное вращательное движение вторичного вихря"

Вихревой шнур
В печах с ВС небольшого размера и формы пятиугольника или окружности в плане можно наблюдать зарождение вихревого горящего шнура по центру, вращающегося, как и центральный поток в трубке Ранка в противоположную от направления подачи воздуха сторону. Но это бывает при большой скорости движения газов по трубе и при наличии не более одного-двух щелевых сопел, обеспечивающих большие скорости втекания в ВС. Несколько слов об этом.

Существенную роль в ВС играет степень турбулентности, которую можно оценить числом Рейнольдса.
Re=v*L/n
Где
Re – безразмерное число Рейнольдса,
v- скорость потока
L- характерный линейный размер
n - кинетическая вязкость
Когда Re > 2320 движение идет с образованием завихрений.
Если принять n= 0.0015м2\с для воздуха при Т=270К
L=0.23м, то получим скорость при которой начинается турбулентность
v=0.15м\с.
Если скорость подачи через вихревое сопло-щель > 0.15м\с при данных допущениях, то ламинарный поток начинает переходить в турбулентный. Этого, правда, еще недостаточно, чтоб активно проявился вихревой эффект. Для этого, поток должен обладать достаточной скоростью, чтобы образовался вихрь диаметром сравнимым с радиусом ВС (за радиус ВС принимаем наименьшее расстояние от центра ВС до внутренней поверхности стенки ВС).
Сделаем небольшие оценки.
Согласно шкале Фудзиты-Пирсона, минимально возможным вихрем в природе являются вихри с линейной скоростью v при вращении воздуха в воронке порядка 18 м\с. Давайте рассмотрим такую схему:

Рис. расположение ВС для появления вихревого шнура, рисунок в плане. 1 – топливник, 2 –вихревое сопло, 3 – ВС

Примем размеры топливника 250 х 500 х 600.
Вихревую щель в узком месте возьмем 10 мм, высотой 124 мм.
Пусть имеется у печи дымовая труба цилиндрической формы d= 120.
Оценим скорость в трубе обычным диапазоном 2-8м\с.
Тогда скорость в узком месте сопла из уравнения струи будет оценена в диапазоне:
Vmin= 2*3.14*sqw(60) / (124*10) = 18 м\с
Vmax = 72 м\с
Полученный диапазон 18-72 м\с соответствует категориям F0- F3 по шкале Фудзиты-Пирсона.
Реальные турбулентности и трение в сопле могут занизить линейную скорость, но тем не менее у нас есть все теоретические предпосылки наблюдать в ВС такой конструкции небольшое торнадо с горящим шнуром по центру с соответствующими звуковыми эффектами.

Задачи получить вихревой шнур в печи не стоит. И, естественно, торнадо в бытовой печи это уже излишне, хотя и зрелищно.

Нам интересен сам факт перемешивания, турбулентности и появления зон с другим давлением и температурой, что заставляет пройти реакцию горения максимально полно.

воплощение
Все эти размышления навели на мысль изначально сделать Вихревой Смеситель (ВС) пятиугольной формы.
ВС в этой конструкции использовалась в камере дожига (КД).

Но эта форма для ВС совсем не обязательна, здесь может быть и квадрат и прямоугольник, или окружность в плане.
На сегодняшний день опробован ВС в обычном топливнике прямоугольной формы с вихревыми щелями по краям.


ВС в составе КД может находится в центре топливника.

Рис. В этом экзотическом варианте предполагается наличие загрузочных дверок по сторонам, а ВС начинается ниже топливника (с подачей воздуха через одну вихревую щель

Также можно использовать ВС не только для КД, но и для топливника.

Рис. здесь топливо закладывается в ВС, загрузочная дверка предполагается сверху или сбоку.

Также легко ВС применяется в КС и для трубы.


Рис. Развязка перекресток для случая встречных четырех потоков. Вид в плане, труба в центре

Одно существенное замечание.
В ВС не все равно в какую сторону закручивается вихрь – это необходимо учитывать при проектировании вихревых щелей сопел. Правый винт и левый винт не равнозначны здесь и газовая смесь ведет себя совершенно по-разному. Это свойство присуще всем вихрям Бенара (или правильно назвать Бенарда, но в России почему-то Benard превратился в Бенара).

1 случай.
Если закручивать поток с внешней стороны (стороны стенки) вихревыми соплами правым винтом (смотреть если сверху, то движение против часовой стрелки), то тогда центральный поток, вращающийся по стрелке будет подниматься вверх, а на периферии опускаться вниз.

Рис. 1 случай

2 случай.
Если закручивать периферию левым винтом – по часовой стрелке, то подниматься будет внешний слой, а средний, вращаясь против часовой стрелки, будет опускаться.

Рис. 2 случай

Какая разница?
В нашей вселенной преобладает правый винт и это самая устойчивая в природе система – от структуры атома и молекулы ДНК, до вихря торнадо и скоплений звезд. Встречающиеся природные вихри Бенара, похоже, все правовинтовые.
По этой причине, когда я конструировал первые ВС, делал их с правой закруткой. Но к чему это приводит? Внутренний средний слой при таком способе начинает подниматься, а внешний – опускаться, иногда это даже приводило к тому, что дым мог отмахнуть через дверку - если ВС в топливнике. Чтоб этого не происходило, приходится идти на ухищрение и делать воздушный замок у проема- слева от дверки межфутеровочное пространство не заполняется и воздух подается на дверку.
Если реализовывать 2 способ в ВС, то преферийный слой поднимается, а центральный опускается и тогда нет никакой отмашки без всяких фокусов. И этот способ интересен еще одной особенностью - правовинтовой вихрь Бенара менее устойчив и он разрушается в зоне перехода в КС, отдавая свою энергию потоку.

ЛИТЕРАТУРА

1 Зельдович Я.Б. , Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва - М.: Наука, 1980
2. М.А.Стырикович. Проблемы сжигания твердого топлива в большой энергетике
3. В.И.Говоров, В.М.Плотников, Е.В.Каратай – г.Темиртау: КГИУ, 2007 г. Теоретические основы горения и взрыва (7.4. Факторы ускорения горения)
4. Н.Н. Семёнов. Цепные реакции. Л.: ОНТИ, 1934; 2-е изд. М.: Наука, 1986;
5.Неволин В.Г. Опыт применения звукового воздействия в практике нефтедобычи Пермского края. – Пермь, 2008.

Эффект Ранка-Хилша и его применение.Часть1.

Вихревой эффект (эффект Ранка –Хилша) – эффект разделения газа или жидкости на две фракции при закручивании в цилиндрической или конической камере. На периферии образуется закрученный поток с большой температурой, а в центре – охлаждённый поток, закрученныё в противоположную сторону.

Впервые данный эффект был открыт при исследовании работы циклонов французским инженером Жозефом Ранком в конце двадцатых годов прошлого столетия, который и запатентовал изделие на основе этого эффекта - “Трубку Ранка” (Вихревую трубку Ранка).

На рисунке схема работы, а на фото - наиболее типичный вид серийно выпускаемых вихревых трубок

В сороковых годах дополнительными исследованиями эффекта и доработкой Трубки Ранка занимался немецкий физик Роберт Хилш. В честь этих выдающихся исследователей интересующий нас эффект и стали называть эффектом Ранка-Хилша.

Дальнейшие исследования проводились во многих странах, в том числе и в СССР. Однако исследования эти носили случайный характер. Причина-отсутствие теории достоверно объясняющей этот парадоксальный, чрезвычайно впечатляющий эффект.

А как всегда получается, - что не можем объяснить, откладываем подальше, до лучших времён.

Тем не менее, исследования пусть недостаточно, но проводились, и в СССР были выпущены две книги (две известных автору статьи, а так может и больше), целиком посвященные этому эффекту и возможности его практического применения.

Один известный в то время рационализатор пытался внедрить изготовленную им трубку для охлаждения токарных резцов непосредственно в процессе резания.

Работа предложенного к испытаниям изделия впечатлила. При подключении трубки к заводской воздушной сети из ”холодного ” конца практически пошёл снег. Эффект охлаждения был достигнут.

Однако побочный эффект, возникший при испытаниях этой, довольно большой по габаритам, трубки сразу перечеркнул возможность её использования, по крайней мере в таком виде, для охлаждения инструмента при точении. Поток воздуха был настолько силён, что мгновенно раздул металлическую стружку со станка во все стороны, в том числе и на соседние станки, на работающих на них людей. Испытания ведь проводились на станке с открытой рабочей зоной, да и других станков в то время практически и не было. Кроме того, очень сильный шум при работе этой большой трубки тоже не способствовал её дальнейшему внедрению.

Однако, вернёмся в наше время. Серийно выпускаемые вихревые трубки, специально предназначенные для охлаждения зоны резания, оснащаются эффективными глушителями шума, имеют различные приспособления для крепления к станку (механические, магнитные), имеют удобную регулировку температуры выходящего воздуха, оснащаются гибкими патрубками для подвода потока холодного воздуха непосредственно в нужное место. Выпускаются трубки различной мощности, что позволяет подобрать трубку в соответствии с поставленной задачей. Все трубки оснащаются фильтрам масло и водо –отделителями.

Кстати, как мы уже отмечали, поток воздуха разделяется в Трубке Ранка на два – холодный и горячий. Так вот, выпускаются специальные трубки, предназначенные для нагрева. Они имеют некоторые конструктивные особенности. Преимущества таких нагревателей - абсолютная безопасность, так как для их работы не используются электрические нагревательные элементы и открытое пламя.

Интересно то, что, как мы уже отмечали, в мире выпускается громадное количество вихревых трубок Ранка различных типоразмеров и видов. Вместе с тем, в открытой прессе практически не встречается информация о их практическом применении при обработке того или иного материала, режимах резания, режущих пластинах. Нам попадали статьи о применении охлаждающих трубок Ранка при обработке чугуна, но тут и так всё понятно, а для остальных обрабатываемых материалов только общая информация. Вместе с тем, теоретический эффект от внедрения этих интереснейших изделий может быть громадным. Представьте только – обработка без применения СОЖ… Не в этом то смысл практического закрытия информации? В общем – вихревая трубка Ранка, это просто “золотая жила” для различных “внедренцев” и исследователей, работающих в области обработки различных материалов. Можно предположить, что ещё много диссертаций будет защищено по этой теме. Ну и хорошо. Была бы польза.

Статьи по теме: