Атмосферный генератор воды из воздуха своими руками. Способ извлечения воздуха из воды

» статьёй про то, как получить воду из воздуха . Где попробуем рассмотреть этот вопрос настолько подробно, насколько это возможно.

Как получить воду из воздуха? На самом деле всё очень просто. На эту мысль меня натолкнул видео-ролик от канала Интер, где рассказывалось про некоего изобретателя из США по имени Терри Леблю, который бесплатно раздаёт воду из воздуха для всех желающих. А злобные и неизвестные конкуренты делают набеги на дом этого изобретателя и подавляют его. Собственно, вот сам ролик:

Естественно, первая мысль у здравого человека при просмотре этого ролика: «Что же это такое супер-пупер нашёл этот изобретатель, что его подавляют неизвестные враги?» А вторая мысль: «Надо бы посмотреть про получение воды из воздуха в интернете».

И что оказывается? Оказывается, что этот изобретатель изобрёл велосипед — то есть, прибор, который уже много лет известен, но не очень распространён по ряду причин, о которых мы расскажем далее. Причём не так далеко — в Крыму — есть остатки попросту гигантских генераторов воды именно этим способом, построенных тысячи лет назад. Подробнее про это — в статье «Назначение загадочных пещерных комплексов в «пещерных городах» Крыма «. Но у нас цель — не древность, а свременность, поэтому продолжим работу.

Так, по слухам, получение воды из воздуха путем его конденсации на холодной поверхности известно с глубокой древности. Город Феодосия еще в средние века снабжался водой, которую собирали специально организованными сооружениями, заполненными щебнем, на поверхности которого в засушливые летние месяцы конденсировалось такое количество воды, которое обеспечивало 80 тысяч жителей

Кстати, между прочим, практически каждый из вас знаком с таким прибором, получающим воду. Этот прибор называется «кондиционер». Принцип работы генераторов атмосферной воды — приборов по получению воды из воздуха — аналогичен работе кондиционера.

То есть, последовательность получения воды из воздуха такова:

  1. Влажный воздух проходит через прибор.
  2. Охлаждается.
  3. Влага конденсируется на охлаждающих поверхностях.
  4. И стекает в специальную ёмкость.
  5. Ну а затем очищается от пыли и бактерий — и вуаля, её можно пить!

По составу вода, которая получается из воздуха, сродни дождевой — а, значит, и росе, туману, дистилированной, обратноосмотической и талой воде. То есть, вода из воздуха относится к классу «слабоминерализованные воды «. В отличие от или воды обычной, слабоминерализованные воды содержат до 50 миллиграмм разнообразных солей в литре (кубическом дециметре).

Ранее мы упоминали, что генераторы атмосферной воды менее распространены, чем обычные фильтры, по ряду причин. Разберёмся в этом подробнее. Факторы, которые влияют на производительность генераторов атмосферной воды и их энернозатратность:

  • количество воды
  • температура воздуха
  • пропущенный обЪём воздуха в единицу времени.

Соответственно, чем более влажный воздух, тем меньше нужно энергии на его охлаждение для конденсации влаги. И тем более экономически выгодно получение воды из воздуха. Соответственно, чем более нагрет воздух, тем больше нужно энергии, чтобы его охладить. И чем больше воздуха охлаждается в единицу времени, тем больше будет получено воды.

В условиях жаркого и сухого воздуха, то есть, в тех местах, где вода действительно необходима, атмосферные генераторы воды будут потреблять наибольшее количество энергии. Но это количество можно уменьшить, если повлиять на перечисленные факторы.

Итак, нужно понимать:

Генератор воды из воздуха = кондиционер

Так, существует направление в разработке атмосферных генераторов воды, которое предполагает использование дополнительной фазы: между первым и вторым шагом получения воды из воздуха появляется ещё один — применение адсорбента или абсорбента , то есть, веществ, которые тем или иным способом поглощают воду из воздуха. Ну а потом вода должна выделиться из поглотившего её материла (для чего материал, например, нагревается) в виде испарений, и уже в более концентрированном виде охлаждается и конденсируется при меньшей температуре.

Воду предполагается поглощать ночью, когда относительная влажность повышена, а извлекать днем путем использования солнечной энергии для нагрева воздуха, подаваемого в слой адсорбента (воздухонагревателем в этом случае является приемник солнечной энергии).

В качестве адсорбента может использоваться широкопористый силикагель, цеолит. В качестве абсорбента — раствор гигроскопичной соли (например, хлорида лития). Возможны комбинации адсорбента и абсорбента, повышающие эффективность поглощения и выдачи воды. Для уменьшения энергозатрат на получение воды предлагают использовать аккумуляторы тепла и/или холода (в основном в виде дешевых, но массивных конструкций из камня или бетона), работающие в противофазе, противоточный теплообменник либо тепловой насос для рекуперации тепла конденсации воды

Естественно, не всегда все эти условия сочетаются оптимально, и адсорбенты в них не применяются, и именно поэтому сейчас более выгодно очищать водопроводную воду с помощью разнообразных , а не получать её из воздуха. Но с ростом дефицита воды вполне возможно, что обычные бытовые фильтры будут постепенно вытесняться генераторами атмосферной воды.

И, кстати, одновременно с ростом дефицита воды прогнозируется и глобальное потепление. Так что актуальными становятся не только генераторы, но и кондиционеры. И, следовательно, вывод — если уж и задумываться о создании генератора атмосферной воды, то лишь в комплекте с кондиционером, что снижает и себестоимость очищенной воды, и себестоимость охлаждения комнаты. Так что если вы — владелец кондиционера, то вы также владеете генератором атмосферной воды и легко можете получать воду из воздуха.

Ну или, если вы — владелец дачного участка, и хотите обеспечить себя водой из воздуха — то можно воспользоваться изобретением со странички http://www.freeseller.ru/dompower/vodosnab/2401-generator-vody-iz-vozdukha.html, где в качестве адсорбента используется газета, а в качестве источника энергии — солнце.

И, напоследок, интересный прибор для получения воды из воздуха — водяной конус:

On7gbKIa5zc

Система очень проста, и чем больше площадь поверхности для конденсации влаги, тем произвоидтельнее установка.

Таким образом, получить воду из воздуха очень просто!

Н. ХОЛИН, профессор, Г. ШЕНДРИКОВ, инженер
Рис. И. КАЛЕДИНА и Н. РУШЕВА
Техника молодёжи №7 1957 год.

Подземный дождь

Нещадно палит летнее солнце и дуют знойные ветры.


Почва настолько иссушена, что покрылась густой сетью глубоких трещин. Растения опустили листья, им явно не хватает влаги.

Там, где близко находится вода, люди поливают землю. Но попробуйте напоить ее, когда поблизости нет большого водоема.

А ведь поверхностному поливу сопутствует ряд отрицательных моментов, в результате чего нарушается жизнедеятельность растения. Сильно переувлажняется верхний слой и в то же время прекращается доступ воздуха в нижние слои почвы, снижается полезная деятельность микроорганизмов. Для развития же сорняков и вредителей такой полив создает особо благоприятные условия. На поверхности почвы откладываются вредные соли, образуется корка. А потом, когда рыхлят почву, ухудшается ее структура, повреждаются корни. Помимо всего, теряется много воды на испарение и фильтрацию.

Поэтому уже давно ведутся работы по созданию такого способа орошения, при котором влага попадала бы сразу к корням растений.

Испытывались различные системы, но все они широкого распространения не получили, так как были несовершенными. В одних случаях поливные сооружения получались сложными и очень дорогими, в других - не удовлетворяли агротехническим требованиям.

Однажды авторы этой статьи сконструировали очень простой и удобный гидробур для нагнетания в почву глинистого раствора. Этот гидробур представляет собой отрезок водопроводной трубы, на конце которой укреплена насадка с автоматически действующим затвором. К трубе присоединяется шланг, по которому от любой машины, имеющей насос и емкость (опрыскиватели, автоцистерны и т. д.), или трубопровода под напором подается вода. Принцип его работы основан не на вращении рабочего органа и не на разрушении грунта, а на его размывании. При включении гидробура вода сама открывает затвор и размывает почву. Рабочий слегка нажимает на трубу, и гидробур очень легко, за несколько секунд, углубляется в почву на 60-100 см. Размытые при этом частицы вмываются водой в поры грунта.


И вот при помощи этого несложного орудия однажды было спасено несколько миллионов кустов виноградника от гибели.

Было это так. Летом прошлого года в Крыму все задыхалось от засухи. Молодые виноградники на площади более 15 тыс. гектаров находились на грани гибели, так как влаги, доступной для растений, в почве уже не было. Листья растений начали увядать и желтеть. Для спасения их при поверхностном поливе нужно было на каждый гектар вылить минимум по 500- 800 куб. м воды. Но где ее взять в таком количестве в иссыхающей степи? Агроном Д. Коваленко, работавший заместителем начальника Крымского областного управления сельского хозяйства, предложил каждому виноградному кусту «выдать» хотя бы 3-4 л воды. Но не выливать ее на поверхность почвы, как это делается обычно, а подать воду прямо к корням. Для этой цели и был применен наш гидробур.

В автоцистернах, опрыскивателях издалека возили воду к виноградным плантациям. К ним присоединяли резиновые шланги гидробуров и подавали скромный паек воды на глубину 60 см. Через несколько дней кусты оживились, расправились листочки. Засуха была побеждена. Удалось не только спасти растения, но они даже стали бурно развиваться. На фоне поблекшей растительности это казалось чудом.

У читателей может возникнуть вопрос: «Неужели оказалось достаточным четырех литров воды, чтобы на все лето напоить большой куст винограда?» Такой же вопрос в свое время возник и у специалистов по орошению земель.

Еще в октябре 1954 года в Одесской области нами были поставлены такие опыты: гидробуром мы подавали в скважины на глубину 60 см по 5 литров воды. После этого было произведено несколько разрезов почвы по оси скважины. В одном из них, сделанном через 12 час, воды оказалось в четыре раза больше, чем было туда налито. А в разрезе, сделанном через 48 час, ее стало еще больше.

Откуда же она взялась?

Ученые давно наблюдали подобное явление в природе. Виднейший советский почвовед и мелиоратор академик А. Н. Костяков писал: «Нужно особо отметить проблему подпочвенного конденсационного орошения, в основе которого должно лежать всяческое усиление процессов конденсации в активных слоях почвы парообразной влаги, содержащейся в атмосферном и почвенном воздухе, и использование этих процессов для увлажнения почвы».

Наш опыт наглядно подтвердил высказывания ученого. Увеличение влаги в разрезанных нами скважинах произошло за счет конденсации водяных паров воздуха в увлажненном, а следовательно, и охлажденном участке почвы. По нашему мнению, такое же явление произошло и при поливе крымских виноградников в исключительно засушливый 1957 год, когда под куст выливалось в среднем не более 4 л воды.

Реки текут над землёй

Точного объяснения всех явлений, связанных с конденсацией паров воздуха в почве, пока еще не дано. К наиболее значительным работам в этой области относятся труды советского профессора В. В. Тугаринова. Ученый на протяжении всей своей жизни занимался вопросом получения воды из воздуха в тех районах, где люди, животные и растения испытывают в ней недостаток. В воздухе проносятся огромные массы влаги. Подсчитано, что в центральной полосе СССР над участком длиной в 100 км при скорости ветра в 5 м/сек за одни сутки проносится столько воды, что из нее можно было бы образовать озеро длиной 10 км, шириной 5 км и глубиной 60 м. А в более жарких. районах на таком пространстве ее будет еще больше. Но она пока остается недосягаемой ни для животных, ни для растений. Только иногда по утрам на почве ничтожное количество ее конденсируется и выпадает в виде росы, которая затем быстро испаряется.

Можно ли заставить пары воды, находящиеся в атмосфере, превращаться в воду?

Профессор Тугаринов доказал, что это вполне осуществимо. В 1936 году на территории Московской сельскохозяйственной академии имени К. А. Тимирязева он построил интересную установку, которая представляла собой небольшой песчаный холм высотой 6 м. В этом холме была устроена вертикальная шахта, соединенная с двумя слегка наклонными трубами. После нескольких лет упорного труда ученый добился блестящего результата: из холма по трубам стала сочиться вода. Ее было тем больше, чем жарче стояла погода. В июле количество воды достигало максимума. Физически это явление, вполне объяснимо. Внутри холма температура ниже, чем у окружающего воздуха. На поверхности более холодных частиц грунта, из которого был сложен холм, происходила конденсация паров - оседала «роса». Вследствие этого давление воздуха внутри холма тоже понижалось, и туда устремлялся наружный теплый воздух. Воды накапливалось еще больше, и она начинала вытекать через трубы. Получается, что воду можно добывать из воздуха. Причем добывать в количествах, достаточных даже для орошения полей. Если бы, например, в условиях Крыма можно было создать конденсирующую поверхность площадью в один квадратный километр, то летом при высокой температуре за 10 час. можно было бы получить около 4 500 куб. м воды. К сожалению, в то время идею ученого не поддержали.


Сейчас описанный выше способ применения средств гидромеханизации позволяет более простым и легким путем претворить в жизнь замыслы профессора Тугаринова. Конденсатором влаги здесь становится сама почва. Гидробур же создает каналы в почве, по которым водяные пары воздуха устремляются в этот естественный кон денсатор. По сути дела, введение воды через гидробур нужно лишь для того, чтобы создать в почве каналы, по которым устремляется горячий воздух, а это вызывает появление своеобразного подпочвенного дождя. Так может решиться проблема, которую в течение длительного времени пытались осуществить многие ученые.

Однако применение гидробура не ограничивается только поливом почвы.

Известно, что знаменитый селекционер Иван Владимирович Мичурин большое внимание уделял глубинной подкормке растений. И это было не случайно. При таком способе подкормки подача питательных веществ происходит непосредственно в зону активной деятельности корневой системы, благодаря чему урожайность увеличивается в 1,5-2 раза. Но, несмотря на исключительную перспективность глубинной подкормки, осуществить ее из-за высокой стоимости работ и низкой производительности труда в широких масштабах не удалось.

С изобретением гидробура эта задача стала разрешимой. Большой опыт применения гидробуров для глубинной подкормки показал, что это очень экономичный способ. Один человек за день может пробурить несколько тысяч скважин с одновременным введением в них необходимого количества подкормочной жидкости. К тому же применение гидробуров позволяет совместить подкормку с глубинным орошением.

У виноградника есть злейший враг- филлоксера. Это очень маленькое насекомое, поражающее корневую систему кустов. Растение заболевает, начинает чахнуть и в конце концов погибает.

Раньше, чтобы избавиться от этой болезни, приходилось зараженные филлоксерой виноградники вырубать и забрасывать их на несколько лет. Гидробур дал возможность проводить борьбу с этим страшным врагом. Ядохимикаты вносятся в почву поярусно на разную глубину. Филлоксера от них погибает, а обреченные на гибель растения полностью выздоравливают и начинают снова обильно плодоносить.

Но и это еще не все. В 1957 году с помощью гидробуров в колхозах и совхозах Одесской области было засажено более 25 тыс. гектаров виноградников. В течение нескольких секунд гидробуром пробуривается скважина определенной глубины. В ней образуется земляная жижа, в которую погружается саженец или черенок. Просто, надежно и высокопроизводительно!

Стоимость посадки виноградников с помощью гидробура обходится в четыре раза дешевле, а посаженные таким образом растения приживаются лучше. Затем они бурно развиваются и раньше начинают давать плоды.

В заключение мы хотим отметить, что гидробур уже сейчас начинает при меняться и на других работах: при осушении болот, при установке опор для виноградников, при борьбе с фильтрацией и засолением почвы. С помощью этого несложного приспособления стало возможным осуществить мечту о превращении пустынных земель Кара-Кумов в цветущие сады. Ведь на орошение возделываемых там хлопчатника, виноградников, субтропических, эфиромасличных и других растений понадобится очень малое количество воды, которую можно относительно легко получить даже в пустыне. Нам кажется, что применение малой гидромеханизации в сельском хозяйстве поможет успешно решить проблему значительного повышения урожайности плодовых садов, хлопчатника, технических культур, да и многих других сельскохозяйственных растений.

Гидробуром пробурили несколько скважин глубиной 0,5 - 0,6 м. В каждую из них подали по 5 л воды под давлением в 2 атмосферы. Через 12 час, сделали раскопки части скважин в виде траншеи глубиной около метра. На фотографии справа показаны разрезы скважин. Количество влаги в зоне увлажнения через 12 час. возросло в четыре раза. Слева дана схема распределения воды в почве. При подаче гидробуром жидкости в почву под большим давлением она устремляется в поры почвы наибольшего диаметра, одновременно расширяя их. В почве создаются многочисленные каналы различных сечений и улучшается ее структурность. Эти каналы создают хорошие условия для движения в почве потоков воздуха и особенно паров воды. Величина конденсации по формуле, выведенной профессором В. В. Тугариновым, зависит от разности упругости паров наружного воздуха и паров у конденсирующей поверхности. Если разность упругости паров воздуха и паров почвы составляет один миллиметр ртутного столба при условии идеального прохождения паров в почве, то за счет конденсации за один час в одном кубическом метре почвы выделится 60 л воды.

В ОБЩУЮ КОПИЛКУ

(журнал "Приусадебное хозяйство")

Много лет я пользуюсь на своем участке простым и удобным гидробуром, о котором я прочел в журнале «Техника молодежи» (№ 7, 1958). Профессор Н. Хомин и инженер Г. Шендриков в статье «Воду можно добывать из воздуха» рассказывали, как при помощи сконструированного ими гидробура за год до публикации статьи в Крыму удалось спасти несколько миллионов виноградных кустов. Молодой виноградник на площади 15 000 гектаров погибал от засухи. Требовалось минимум 500, а то и 800 м3 воды(на 1 га), а ее-то и не было. Но стоило с помощью гидробура подать прямо к корням растений всего по 3-4 л воды, как уже через несколько дней они не только «ожили», но и стали бурно развиваться.

Опыты, проведенные авторами, показали, что если на глубину 60 см подать 5 л воды, то через 12 часов там окажется ее в несколько раз больше, потому что, вводя воду, мы создаем под землей многочисленные каналы, где будет конденсироваться влага.

Под действием воды, подаваемой в гидробур под давлением 1,5-2 атмосферы, он заглубляется на нужную глубину.

При работе с этим приспособлением можно не ограничиваться поливом, а проводить глубинную подкормку растений, вводить для защиты от филлоксеры химикаты, за несколько секунд пробурить скважину, заполняющуюся тут же влагой, для посадки черенка винограда.

Несколько слов о конструкции гидробура (см. рис.).

Он состоит из дюймовой трубы длинной 1м. На конце ввернут наконечник. Поперек другого конца трубы приварена тоже дюймовая трубка длиной 40 см. Один конец ее заварен. Через кран по поперечной трубке подается вода, поступающая в наконечник. Эта трубка служит одновременно и рукояткой.

Наконечник состоит из корпуса и конуса, закрепленного в корпусе фигурной шайбой. Конус, прижатый к корпусу гайкой, перекрывает подач; воды из канала. Она может поступать наружу только по шести канавкам, выфрезерованным в нижней части корпуса, к которому прижимается верхняя часть конуса.

Выходя из наконечника гидробура, вода размывает почву, и он погружается в почву. После перекрытия крана необходимо дать возможность остаткам воды выйти наружу, с тем чтобы при подъеме оставшаяся в гидробуре вода не смыла бы грунт со стенок скважины. Почва и дождевая вода не попадают в скважину, потому что я закрываю ее консервной банкой, предварительно проделав на ее боковой стенке отверстия. Чтобы снабдить, например, двадцатилетнее плодовое дерево влагой, мне достаточно сделать 6-8 «уколов». Нужное давление в гидробуре создано с помощью опрыскивателя харьковского производства с баком емкостью 50 л. После...(к великому сожалению окончания у меня нет) .
[email protected]

Предлагаю Вашему вниманию интересную статью на которую случайно наткнулся и выкладываю сюда. Сайт с которого он был сохранен назывался магов.нет, но у меня он туда так и не зашел. Поэтому выкладываю текст статьи и схемки:
"Проблема воды на приусадебном участке, на даче, в кооперативе не является редкостью. Прокладка водопровода или бурение скважины не всегда может себе позволить даже кооператив. Копание колодца вряд ли дешевле и целесообразней.
Есть ли выход из этого положения?
Есть и довольно простой и надёжный.
Насыпается пирамида из щебня на бетонном основании. Днём в тёплое время года щебёнка прогревается прямыми солнечными лучами и потоками тёплого воздуха. Ночью водяные пары, содержащиеся в атмосфере, конденсируются на остывшей щебёнке и вода стекает в углубление фундамента и далее по отводной трубе - в место сбора.
Высота пирамиды выбирается от потребности воды.
Ориентировочно, при высоте 2,5 м. за сутки такая конструкция может дать, в зависимости от влажности воздуха и суточных перепадов температуры, от 150 до 350 литров воды, что практически обеспечит любой приусадебный или дачный участок.

Для насыпки пирамиды лучше брать крупную щебёнку (гравий) размером 5-7 см. т.к. тогда вся конструкция свободно будет продуваться тёплым воздухом.
Щебень из гранита можно считать пределом мечтаний.

Для насыпки щебня на основание в форме пирамиды используется металлический каркас, который устанавливается на фундамент и по нему выравниваются грани.
После окончания формовки сверху можно натянуть металлическую оцинкованную сетку для предотвращения сползания щебня.
Высота фундамента выбирается по желанию и материальным возможностям владельца. Однако, он должен быть достаточно прочным, чтобы выдержать вес щебня.
Чтобы фундамент не делать высоким для стока воды, лучше всего пирамиду строить на пригорке, если на участке или рядом такой имеется.

Ориентированная по краям света пирамида помимо конденсации воды будет оздоравливать и нормализовать всё окружающее пространство.

Если есть биопатогенные зоны, то они будут нейтрализованы;
вода, полученная в пирамиде, будет целебной и для человека, и для растений, и для животных;
Если вода из этого конденсатора будет использоваться для питья и приготовления пищи, что весьма желательно, то перед насыпкой пирамиды, основание фундамента и весь щебень следует хорошо промыть водой, а полученную воду пропускать через механический фильтр.

Чтобы эта конструкция приносила максимальную пользу, строить её следует с соблюдением всех пропорций, которые даны в таблице 1 для наиболее вероятных размеров пирамиды.
Если у кого-либо появится желание и возможность рядом с пирамидой построить бассейн, куда будет стекать вода, то переоценить такой комплекс будет практически невозможно.
Утренняя ванна, принятая в воде, пропитанной энергией пирамиды, на всю жизнь заменит всех врачей и лекарства.
В качестве бассейна можно использовать обыкновенную ванну, установленную с северной стороны пирамиды.

Саму пирамиду весьма желательно строить с южной стороны по отношению к дому или дачной постройки.

В целях экономии средств, материалов, времени постройки и площади, пирамиду можно построить одну на несколько участков.

Чтобы дождевая вода не попадала на конструкцию, над ней желательно сделать навес из прозрачного материала (стеклопластик, плёнка, стекло)

Нельзя выжать сок из камня, а вот добыть воду из пустынного неба вполне возможно, и все благодаря новому устройству, которое использует солнечный свет для всасывания водного пара из воздуха даже при низкой влажности. Устройство может производить до 3 литров воды в день и, по словам исследователей, в будущем технология станет еще эффективнее. Это значит, что в домах жителей засушливых районов в скором времени может появиться источник чистой воды на солнечной батарее, что поможет существенно повысить уровень жизни населения.

В атмосфере находится порядка 13 триллионов литров воды, что эквивалентно 10% от запаса всей пресной воды в озерах и реках нашей планеты. На протяжении многих лет исследователи разрабатывали технологии конденсации воды их воздуха, но большинство из них требует несоразмерно больших затрат электроэнергии, так что в странах с развивающейся экономикой они вряд ли окажутся востребованы большинством.

Чтобы найти универсальное решение, исследователи под руководством Омара Яги, химика из Калифорнийского университета в Беркли, обратились к семейству кристаллических порошков, называемых металлическими органическими каркасами или MOF. Яги разработал первые MOF-кристаллы, образующие объемные сети, около 20 лет назад. Основой для структуры этих сетей выступают атомы металлов, а липкие полимерные частицы соединяют ячейки вместе. Экспериментируя с органикой и неоганикой, химики могут создавать различные типы MOF и контролировать то, какие газы вступают с ними в реакцию и насколько прочно они удерживают те или иные вещества.

За последние два десятилетия химики синтезировали более 20 000 MOF, каждый из которых обладает уникальными свойствами захвата молекул. Например, Яги и другие недавно разработали MOF, который поглощает, а затем высвобождает метан, делая их своего рода бензобаками большой емкости для транспортных средств, работающих на природном газе.

В 2014 году Яги и его коллеги синтезировали MOF-860 на основе циркония, который превосходно поглощал воду даже в условиях низкой влажности. Это привело его к Эвелин Ванг, инженеру-механику Массачусетского технологического института в Кембридже, с которой он ранее работал над проектом использования MOF для кондиционирования воздуха в автомобиле.

Система, разработанная Ван и ее учениками, состоит из килограмма пылевидных кристаллов MOF, спрессованных в тонкий лист пористой меди. Этот лист помещается между светопоглотителем и пластиной конденсатора внутри камеры. Ночью камеру открывают, позволяя окружающему воздуху диффундировать через пористый MOF, в процессе чего молекулы воды, чтобы прилипать к ее внутренним поверхностям, собираются в группы по восемь штук и образуют крошечные кубические капельки. Утром камера закрывается, и солнечный свет проникает через окно сверху устройства, нагревая MOF и освобождая воду, что превращает капли в пар и транспортирует его к более холодному конденсатору. Разность температур, а также высокая влажность внутри камеры заставляют пар конденсироваться в виде жидкой воды, которая капает в коллектор. Установка работает настолько хорошо, что при непрерывном запуске она вытягивает 2,8 литра воды из воздуха в день, сообщает сегодня команда Berkeley и MIT.

Стоит отметить, что установке еще есть куда расти. Во‑первых, цирконий стоит 150 долларов за килограмм, что делает устройства для сбора воды слишком дорогими, чтобы его можно было массово производить и продавать за скромную сумму. Яги говорит, что его группа уже успешно спроектировала водосборный MOF, в котором цирконий заменен в 100 раз более дешевым алюминием. Это может сделать будущие водосборщики пригодными не только для утоления жажды людей в засушливых районах, но, возможно, даже для снабжения водой фермеров в пустыне.

Принцип действия

ГВ представляет собой пирамидальный каркас с влагопоглощающим наполнителем. Пирамидальный каркас образован четырьмя стойками поз. 3, приваренными к основанию поз. 4, выполненною из металлического уголка.

В пространство между уголками основания вварена металлическая сетка поз. 15; снизу к основанию при помощи накладок поз. 6 крепится полиэтиленовый поддон поз. 5 с отверстием посередине.

Внутреннее пространство сетчатого каркаса плотно (но без деформации стенок) заполняется влагопоглощающим материалом. Снаружи на пирамидальный каркас надевается прозрачный купол поз. 1, который фиксируется при помощи четырех растяжек поз. 8 и амортизатора поз. 14. ГВ имеет два рабочих цикла: поглощение влаги из воздуха наполнителем; выпаривание влаги из наполнителя с последующей ее конденсацией на стенках купола.

С заходом солнца прозрачный купол поднимают, чтобы обеспечить доступ воздуха к наполнителю; наполнитель поглотает влагу всю ночь.

Утром купол опускается и герметизируется амортизатором; солнце выпаривает влагу из наполнителя, пар собирается в верхней части пирамиды, конденсат стекает по стенкам купола на поддон и через отверстие в нем наполняет водой подставленную емкость.

Изготовление генератора воды

Подготовку к изготовлению ГВ начинают со сбора наполнителя.

В качестве наполнителя используются обрезки газетной бумаги; бумагу от газет нужно брать свободную от типографского шрифта во избежание засорения получаемой воды соединениями свинца.

Работа по сбору бумаги займет немало времени, вот за это время изготавливаются остальные элементы ГВ.

Основание сваривается из металлических уголков с размерами полок 35x35 мм, снизу к нему привариваются четыре опоры поз. 10 из таких же уголков и восемь кронштейнов поз. 13. Кронштейны соединяются между собой стальными прутками поз. 17 длиной 930 мм. диаметр 10 мм.

Сверху на полки уголков приваривается металлическая сетка с размером ячеек 15x15 мм. диаметр проволоки сетки 1,5-2 мм.

Из стальной ленты вырезаются четыре накладки поз. 6. По отверстиям в накладках сверлятся отверстия диаметром 4,5 мм в уголках основания и нарезается резьба под винты ВМ 5; Затем основание устанавливают на место, определенное для ГВ на садовом участке, огороде и т.д.

Место нужно выбирать так, чтобы ГВ не затенялся деревьями и постройками. После выбора места опоры основания фиксируется в земле цементным раствором. Допускается к опорам приварить опорные пятаки диаметром 100 мм из стального листа толщиной 2 мм.

После этого в углы квадрата основания привариваются поочередно четыре стойки таким образом, стойки оказались длинной 30 мм оказались в центре основания на высоте примерно.

Материал поперечин такой же как у стоек.

Затем из полиэтиленовой пленки толщиной 1 мм вырезается поддон поз. 5; края поддона, которые окажутся под накладками, подворачивают для усиления места крепления. В центре поддона вырезают круглое отверстие диаметром 70 мм - для стока воды. Края отверстий также можно усилить путем приваривания дополнительной накладки из полиэтилена.

Далее производят фиксацию на стойках сетчатого каркаса, представляющего собой мелкоячеистую рыболовную сеть с размером ячеек 15x15 мм. Сеть подвязывается к стойкам и краям поддона из металлической сетки при помощи х/б тесьмы так. чтобы сеть была туго натянута между стоек.

Желательно также подвязать сеть и к поперечинам, поделив внутренний объем пирамиды на два отсека.

Перед подвязкой сети к последней стойке, отсеки (начиная с верхнего) получившегося сетчатого каркаса плотно заполняется скомканными обрезками газетной бумаги. Заполнение производить так, чтобы не оставалось свободного места внутри пирамиды и выступание сетчатых стенок было минимальным.

Затем приступают к изготовлению прозрачного купола.

Он выполнен из полиэтиленовой пленки, раскрой которой производится согласно чертежа поз. 1 и сваривается паяльником по плоскостям А, А1. Шов выполнять без перегрева, чтобы полиэтилен не становился ломким в месте сварки.

Для предотвращения нарушения целостности купола в вершине пирамиды ее накрывают своеобразной полиэтиленовой "шапочкой" - фрагмент В по чертежу поз. 1. Затем, предварительно надев фрагмент В на пирамиду, аккуратно надевают на каркас купол. Расправив купол, сваривают между собой края плоскостей С: получается своеобразная крыша.

Эксплуатация

С заходом солнца прозрачный купол подворачивают до уровня поперечин и фиксируют в таком положении растяжками, надев крюки на прутки поз. 17.

За ночь бумага вберет в себя влагу и, утром купол опускают, фиксируя его нижний край на основании амортизатором.

За день солнце раскалит пирамиду, влага из бумаги испарится, пар по мере остывания конденсируется на стенках в воду, которая стекает вниз. Воду набирают, подставив какую-либо емкость под отверстие в полиэтиленовом поддоне.

С заходом солнца цикл повторяют.


Статьи по теме: