Компенсация температурных удлинений трубопроводов. Компенсация температурных деформаций. Компенсация температурных удлинений трубопроводов тепловых сетей. Виды компенсаторов. Конструктивные решения, выбор и расчет узлов самокомпенсации и П- образных компе

размер шрифта

ПОСТАНОВЛЕНИЕ Госгортехнадзора РФ от 10-06-2003 80 ОБ УТВЕРЖДЕНИИ ПРАВИЛ УСТРОЙСТВА И БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ТЕХНОЛОГИЧЕСКИХ... Актуально в 2018 году

5.6. Компенсация температурных деформаций трубопроводов

5.6.1. Температурные деформации следует компенсировать за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией (например, на совершенно прямых участках значительной протяженности) на трубопроводах устанавливаются П-образные, линзовые, волнистые и другие компенсаторы.

В тех случаях, когда проектом предусматривается продувка паром или горячей водой, компенсирующая способность трубопроводов должна быть рассчитана на эти условия.

5.6.2. Не допускается применять сальниковые компенсаторы на технологических трубопроводах, транспортирующих среды групп А и Б.

Не допускается установка линзовых, сальниковых и волнистых компенсаторов на трубопроводах с условным давлением свыше 10 МПа (100 кгс/см2).

5.6.3. П-образные компенсаторы следует применять для технологических трубопроводов всех категорий. Их изготавливают либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов.

5.6.4. Для П-образных компенсаторов гнутые отводы следует применять только из бесшовных, а сварные - из бесшовных и сварных прямошовных труб. Применение сварных отводов для изготовления П-образных компенсаторов допускается в соответствии с указаниями п. 2.2.37 настоящих Правил.

5.6.5. Применять водогазопроводные трубы для изготовления П-образных компенсаторов не допускается, а электросварные со спиральным швом рекомендуются только для прямых участков компенсаторов.

5.6.6. П-образные компенсаторы должны быть установлены горизонтально с соблюдением необходимого общего уклона. В виде исключения (при ограниченной площади) их можно размещать вертикально петлей вверх или вниз с соответствующим дренажным устройством в низшей точке и воздушниками.

5.6.7. П-образные компенсаторы перед монтажом должны быть установлены на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

5.6.8. Линзовые компенсаторы, осевые, а также линзовые компенсаторы шарнирные применяются для технологических трубопроводов в соответствии с нормативно-технической документацией.

5.6.9. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы должен быть предусмотрен дренаж конденсата. Патрубок для дренажной трубы изготавливают из бесшовной трубы. При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора должны быть предусмотрены направляющие опоры на расстоянии не более 1,5 Ду компенсатора.

5.6.10. При монтаже трубопроводов компенсирующие устройства должны быть предварительно растянуты или сжаты. Величина предварительной растяжки (сжатия) компенсирующего устройства указывается в проектной документации и в паспорте на трубопровод. Величина растяжки может изменяться на величину поправки, учитывающей температуру при монтаже.

5.6.11. Качество компенсаторов, подлежащих установке на технологических трубопроводах, должно подтверждаться паспортами или сертификатами.

5.6.12. При установке компенсатора в паспорт трубопровода вносят следующие данные:

техническую характеристику, завод-изготовитель и год изготовления компенсатора;

расстояние между неподвижными опорами, необходимую компенсацию, величину предварительного растяжения;

температуру окружающего воздуха при монтаже компенсатора и дату.

5.6.13. Расчет П-образных, Г-образных и Z-образных компенсаторов следует производить в соответствии с требованиями нормативно-технической документации.

Устройство содержит изогнутой формы корпус из отводов и прямых участков, выполненный из эластичного материала, преимущественно из резинотканевого рукава (шланга), а на концах корпуса установлены патрубки или патрубки с фланцами для соединения с трубопроводами тепловой сети, а материал эластичного корпуса армирован металлической сеткой.

Изобретение относится к системам централизованного теплоснабжения населенных мест, промышленных предприятий и котельных.

В централизованных системах теплоснабжения один источник теплоты (котельная) подает теплоту нескольким потребителям, расположенным на некотором расстоянии от источника теплоты, а передача теплоты от источника до потребителей осуществляется по специальным теплопроводам - тепловым сетям.

Тепловая сеть состоит из соединенных между собой сваркой стальных трубопроводов, тепловой изоляции, устройств для компенсации температурных удлинений, запорной и регулирующей арматуры, подвижных и неподвижных опор и др. , с.253 или , с.17.

При движении теплоносителя (вода, пар и др.) по трубопроводам последние нагреваются и удлиняются. Например, при повышении температуры на 100 градусов удлинение стальных трубопроводов составляет 1,2 мм на один метр длины.

Компенсаторы используются для восприятия деформаций трубопроводов при изменении температуры теплоносителя и для разгрузки их от возникающих температурных напряжений, а также для предохранения от разрушения арматуры, установленной на трубопроводах.

Трубопроводы тепловых сетей устраивают таким образом, чтобы они могли свободно удлиняться при нагревании и укорачиваться при охлаждении без перенапряжения материала и соединений трубопровода.

Известны устройства для компенсации температурных удлинений , которые выполнены из тех же труб, что и стояки горячего водоснабжения. Указанные компенсаторы выполнены из труб, изогнутых в виде полуволн. Такие устройства имеют ограниченное применение, так как компенсирующая способность полуволн небольшая, во много раз меньше, чем у П-образных компенсаторов. Поэтому такие устройства не применяются в системах теплоснабжения.

Известны наиболее близкие по совокупности признаков устройства для компенсации температурных удлинений тепловых сетей с 189, или стр.34. Известные компенсаторы можно разделить на две группы : гибкие радиальные (П-образные) и осевые (сальниковые). Чаще применяют П-образные компенсаторы, так как они не нуждаются в обслуживании, но требуется их растяжка. К недостаткам П-образных компенсаторов можно отнести: повышенное гидравлическое сопротивление участков тепловых сетей, увеличение расхода трубопроводов, необходимость устройства ниш, а это приводит к увеличению капитальных затрат. Сальниковые компенсаторы требуют постоянного обслуживания, поэтому их можно устанавливать только в тепловых камерах, а это приводит к удорожанию строительства. Для компенсации температурных удлинений используют и повороты тепловых сетей (Г- и Z - образная компенсация, рис.10.10 и 10.11, с 183 ).

Недостатками таких компенсирующих устройств являются усложнение монтажа при наличии П-образных компенсаторов и усложнение эксплуатации при использовании сальниковых компенсаторов, а также небольшой срок службы стальных трубопроводов из-за коррозии последних. Кроме того, при температурных удлинениях трубопроводов возникают силы упругой деформации, изгибающие моменты гибких компенсаторов, в том числе поворотов тепловых сетей. Вот почему при устройстве тепловых сетей используют стальные, как наиболее прочные трубопроводы и требуется проводить расчет на прочность , с.169. Заметим, что стальные трубопроводы тепловых сетей подвержены интенсивной коррозии, как внутренней, так и наружной. Поэтому срок службы тепловых сетей, как правило, не превышает 6-8 лет.

П-образные компенсаторы состоят из 4-х отводов и трех прямых участков стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «П».

Самокомпенсация трубопроводов осуществляется по Z-образной схеме и Г-образной схеме , рис.10.10. и рис.10.11, с.183.

Z-образная схема включает два отвода и три прямых участка стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «Z».

Г-образная схема включает один отвод и два прямых участка стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «Г».

Задачей изобретения является увеличение срока службы подающих и обратных трубопроводов тепловых сетей, упрощение монтажа тепловых сетей и создание условий, при которых будут отсутствовать причины, которые приводят к возникновению напряжений в трубопроводах от температурных удлинений трубопроводов.

Поставленная цель достигается тем, что устройство для компенсации температурных удлинений трубопроводов тепловой сети содержащее изогнутой формы корпус, состоящее из отводов и прямых участков трубопровода, отличается от прототипа тем, что изогнутой формы корпус из отводов и прямых участков выполнен из эластичного материала, преимущественно из резинотканевого рукава (или шланга, выполненного, например, из резины), а на концах корпуса установлены патрубки или патрубки с фланцами для соединения с трубопроводами тепловой сети. При этом эластичный материал, из которого выполнен изогнутой формы корпус (шланг) может быть армирован преимущественно металлической сеткой.

Использование предлагаемого устройства приводит к уменьшению расхода трубопроводов, уменьшению размеров ниш для установки компенсаторов, не требуется проводить растяжку компенсаторов, то есть в итоге уменьшаются капитальные затраты. Кроме того, в подающем и обратном трубопроводах тепловых сетей не будут возникать напряжения от температурных удлинений; следовательно, для устройства тепловых сетей могут использоваться трубопроводы, выполненные из менее прочного материала, чем сталь, в том числе могут использоваться трубы, стойкие против коррозии (чугун, стекло, пластик, асбестоцемент и др.), а это приводит к снижению капитальных и эксплуатационных затрат. Выполнение подающих и обратных трубопроводов из материала, стойкого против коррозии (чугун, стекло и др.) повышает долговечность тепловых сетей в 5-10 раз, а это приводит к уменьшению эксплуатационных затрат; действительно, если срок службы трубопроводов увеличивается, значит, заменять трубопроводы тепловых сетей приходится реже, а это значит, что реже придется отрывать траншею, снимать плиты перекрытия каналов для прокладки тепловых сетей, демонтировать трубопроводы, которые отслужили свой срок эксплуатации, укладывать новые трубопроводы, покрывать их новой тепловой изоляцией, укладывать плиты перекрытия на место, засыпать траншею грунтом и выполнять другие работы.

Устройство поворотов тепловых сетей для осуществления «Г» и «Z»-образной компенсации трубопроводов приводит к уменьшению затрат металла и упрощению компенсации температурных удлинений. При этом резинотканевый рукав, используемый для компенсации температурных удлинений, может быть выполнен из резины или шланга; при этом шланг может быть армирован (для прочности) например, стальной проволокой.

В технике широко применяются резинотканевые рукава (шланги). Например, гибкие трубы (виброизолирующие вставки) применяются для предотвращения передачи вибрации от циркуляционного насоса на систему отопления с.107, рис.V9. При помощи шлангов осуществляется присоединение умывальников и моек к трубопроводам горячего и холодного водоснабжения. Однако, в этом случае резинотканевые рукава (шланги) проявляют новые свойства, так как выполняют роль компенсирующих устройств, то есть компенсаторов.

На фиг.1 представлено устройство для компенсации температурных удлинений трубопроводов тепловых сетей, а на фиг.2 разрез 1-1 фиг.1

Устройство состоит из трубопровода 1 длиной L, выполненного из эластичного материала; таким трубопроводом может служить резиновый рукав, гибкая труба, шланг, шланг армированный металлической сеткой, трубопровод, выполненный из резины и т.п. В каждый конец 2 и 3 трубопровода 1 вставлен патрубок 4 и 5, к которым жестко, например, с помощью сварки, присоединены фланцы 6 и 7, в которых имеются отверстия 8 и 9, диаметром равные внутреннему диаметру патрубков 4 и 5. Для обеспечения прочности и герметичности соединения трубопровода 1 и патрубков 4 и 5 установлены хомуты 10 и 11. Каждый хомут стягивается болтом 12 и гайкой 13. Во фланцах 6 и 7 имеются отверстия 14 для болтов 31, фиг.5 которыми фланцы 6 и 7 соединяется с контрфланцами 19 и 20, прикрепленными к трубопроводам 15 и 16 тепловой сети (см. фиг.5 и 6). Контрфланцы на фиг.1 и 2 не показаны. Для обеспечения прочности и герметичности соединения трубопровода 1 и патрубков 4 и 5 вместо хомутов 10 и 11 можно использовать и другое соединение, например, с помощью обжима.

В данном устройстве патрубки 4 и 5 и фланцы 6 и 7 могут быть изготовлены из стали и соединены при помощи, например, сварки. Однако, более целесообразно патрубки 4 и 5 и фланцы 6 и 7 выполнять как единое, неразъемное изделие, например, методом литья или методом литья под давлением из материала, стойкого против коррозии, например, из чугуна. В этом случае долговечность предложенного устройства будет значительно больше.

На фиг.3 и 4 показан другой вариант предложенного устройства. Отличие состоит в том, что к патрубкам 4 и 5 фланцы 6 и 7 не присоединяется, а соединение патрубков 4 и 5 с трубопроводами тепловой сети осуществляется с помощью сварки, то есть предусматривается неразъемное соединение. При наличии фланцев 6 и 7 (см. фиг.1) соединение предлагаемого устройства с трубопроводом тепловой сети осуществляется с помощью разъемного соединения, более удобного при монтаже трубопроводов.

Перед установкой на место устройству для компенсации температурных удлинений трубопроводов тепловых сетей придают форму изогнутого корпуса. Для примера на фиг.5 показана П-образная форма корпуса. Такую форму придают предложенному устройству путем изгиба трубопровода 1, см. фиг.1. Когда необходимо осуществить компенсацию температурных удлинений за счет поворотов, то предложенному устройству придают Г-образную или Z-образную форму. Заметим, что Z-образная форма состоит из двух Г-образных форм.

На фиг.5 показан участок трубопровода 15 длиной L 1 и участок трубопровода 16 длиной L 3 ; указанные участки расположены между неподвижными опорами 17 и 18. Между трубопроводами 15 и 16 расположено предлагаемое устройство для компенсации температурных удлинений длиной L 2 . Расположение всех элементов на фиг.5 показано при отсутствии теплоносителя в трубопроводах 15 и 16 и в предлагаемом устройстве.

К трубопроводу 15 (см. фиг.5) жестко (при помощи сварки) присоединен контрфланец 19, а к трубопроводу 16 аналогичным образом присоединен контрфланец 20.

После установки на место предложенного устройства оно при помощи болтов 32 и гаек, фланцев 6 и 7 и контрфланцев 19 и 20 присоединяется к трубопроводам 15 и 16; между фланцами устанавливают прокладки. На фиг.5 хомуты 10 и 11 и болты 12 условно не показаны.

На фиг.5 показано предлагаемое устройство для компенсации температурных удлинений путем придания трубопроводу 1 (см. фиг.1) П-образной формы, то есть в данном случае предложенное устройство - изогнутой формы корпус - состоит из 4-х отводов и 3-х прямых участков.

Устройство работает следующим образом. Когда в предлагаемое устройство и трубопроводы 15 и 16 подается теплоноситель, например, горячая вода, то трубопроводы 15 и 16 нагреваются и удлиняются (см. фиг.6). Трубопровод 15 удлиняется на величину L 1 ; длина трубопровода 15 будет равна . При удлинении трубопровода 15 он перемещается вправо, и одновременно вправо перемещаются фланцы 19, патрубок 4 и часть трубопровода 1, которые соединены друг с другом (хомуты 10 и 11 на фиг.5 и 6 условно не показаны). В то же самое время трубопровод 16 удлиняется на величину L 3 , длина трубопровода 16 будет равна . При этом фланцы 7 и 20, патрубок 5 и часть трубопровода 1, соединенная с патрубком 5 переместится влево на величину L 3 Расстояние между фланцами 6 и 7 уменьшилось и стало равным . При этом трубопровод 1, соединяющий патрубки 4 и 5 (и трубопроводы 15 и 16) изгибается и за счет этого не препятствует перемещению трубопроводов 15 и 16, следовательно, в трубопроводах 15 и 16 не возникает напряжения от удлинения трубопроводов.

Очевидно, что длина трубопровода 1 должна быть больше расстояния L 2 между фланцами 6 и 7, чтобы иметь возможность изгибаться. При этом никаких напряжений в трубопроводах 1, 15 и 16 от температурных удлинений трубопроводов 15, 16 и 1 не возникает.

Предлагаемое устройство для компенсации температурных удлинений целесообразно устанавливать на середине прямых участков между неподвижными опорами.

Предлагаемое устройство, показанное на фиг.3 и 4, работает аналогичным образом; отличие состоит только в том, что в устройстве отсутствуют фланцы 6 и 7 (фиг.5), а соединение обеих патрубков 4 и 5 с трубопроводами 15 и 16 осуществляется с помощью сварки, то есть в этом случае применяют неразъемное соединение (показано на фиг.7).

На фиг.7 показан Г-образный участок трубопровода, расположенный между неподвижными опорами 21 и 22. Длина прямого участка трубопровода 23 равна L 4 , а трубопровода 24 равна L 5 . Трубопровод 1 (см. фиг.1), изогнут по радиусу R. Представленное устройство несколько отличается от устройства, представленного на фиг.1, а именно: на фиг.7 отсутствуют патрубки 4 и 5 с фланцами 6 и 7. Функцию патрубка выполняют трубопроводы 23 и 24, то есть трубы вставлены в концы 2 и 3 трубопровода 1 (фиг.1), хомуты 10 и 11 обеспечивают прочность и плотность соединения трубопроводов 1 с трубопроводами 23 и 24. Такое конструктивное выполнение несколько упрощает изготовление предложенного устройства, но усложняет монтаж тепловых сетей, поэтому имеет ограниченное применение. Расположение всех элементов, изображенных на фиг.7, показано при отсутствии теплоносителя в трубопроводах 23, 24 и 1.

Когда в трубопроводы 1, 23 и 24 подается теплоноситель, то трубопроводы 23 и 24 нагреваются и удлиняются (см. фиг.8). Трубопровод 23 удлиняется на величину L 4 , а трубопровод 24 удлиняется на величину L 5 . При этом торец 25 трубопровода 23 перемещается вверх, а торец 26 трубопровода 24 перемещается влево (см. фиг.8). При этом трубопровод 1, (выполнен из эластичного материала), соединяющий торцы 25 и 26 трубопроводов 23 и 24, за счет своего изгиба не препятствует перемещению трубопровода 23 вверх, а трубопровода 24 влево. При этом никаких напряжений от температурных удлинений в трубопроводах 1, 23 и 24 не возникает.

На фиг.9 показан вариант предложенного устройства, когда оно используется для Z-образной компенсации температурных удлинений. Z-образный участок трубопровода расположен между неподвижными опорами 26 и 27. длина трубопровода 28 равна L 6 , а трубопровода 29 - L 8 ; длина устройства для компенсации температурных удлинений равна L 7 Трубопровод 1 изогнут в форме буквы Z. В каждый конец 2 и 3 трубопровода 1 вставлены патрубки 4 и 5 с фланцами 6 и 7. Трубопровод 28, патрубок 4, фланцы 6 и 30 прочно и герметично соединены, например, при помощи болтов и хомутов (см. фиг.1). Аналогично соединены трубопровод 29, патрубок 5, фланцы 7 и 31. Расположение всех элементов на фиг.9 показано при отсутствии теплоносителя в трубопроводах (фиг.9). Принцип работы предложенного устройства аналогичен ранее рассмотренному устройству, см. фиг.1-8.

Когда в трубопроводы 28, 1 и 29 подается теплоноситель (см. фиг.10), трубопроводы 28, 1 и 29 нагреваются и удлиняются. Трубопровод 28 удлиняется вправо на величину L 6 ; одновременно вправо перемещаются фланцы 6 и 30, патрубок 4 и торец 2 трубопровода 1 (то есть перемещается часть трубопровода 1, присоединенная к патрубку 4, так как эти элементы соединены друг с другом и трубопроводом 28. Аналогично, трубопровод 29 удлиняется влево на величину L 8 ; одновременно влево перемещаются фланцы 7 и 31, патрубок 5 и торец 3 трубопровода 1 (то есть перемещается часть трубопровода 1, присоединенная к патрубку 5, так как эти элементы соединены друг с другом и трубопроводом 29. При этом трубопровод 1 за счет своего изгиба не препятствует перемещению трубопроводов 28 и 29. При этом никаких напряжений от температурных удлинений в трубопроводах 28, 29 и 1 не возникает.

Во всех рассматриваемых вариантах конструктивного выполнения предложенного устройства длина трубопровода L (см. фиг.1) зависит от диаметра трубопроводов тепловой сети, материала, из которого выполнен трубопровод 1 и других факторов и определяется расчетом.

Трубопровод 1 (см. фиг.1) может быть выполнен из гофрированного резинотканевого рукава (шланга), однако гофры увеличивают гидравлическое сопротивление тепловой сети, засоряются твердыми частицами, которые могут присутствовать в теплоносителе, а при наличии твердых частиц компенсирующая способность такого рукава уменьшается, поэтому такой рукав имеет ограниченное применение; применяется, когда в теплоносителе отсутствуют твердые частицы.

На основании вышеизложенного можно заключить, что предложенное устройство долговечно, проще в монтаже и более экономично по сравнению с известным устройством.

Источники информации

1. Инженерные сети. Оборудование зданий и сооружений: Учебник/ Е.Н.Бухаркин и др.; Под ред. Ю.П.Соснина. - М.: Высшая школа 2001. - 415 с.

2. Справочник проектировщика. Проектирование тепловых сетей. Под ред. Инж. А.А.Николаева. М.: Стройиздат, 1965. - 360 с.

3. Описание изобретения к патенту RU 2147104 CL F24D 17/00.

09.04.2011

Введение

В последние годы в России широко стала применяться бесканальная прокладка теплопроводов с использованием стальных предварительно изолированных труб, для компенсации температурных деформаций которых применяются стартовые сильфонные компенсаторы (СК) и предварительно изолированные сильфонные компенсационные устройства (СКУ).

Как уже описывалось ранее , применение при бесканальной прокладке стартовых компенсаторов целесообразно на тепловых сетях в тех системах теплоснабжения, где применяется количественное регулирование тепловых нагрузок. Кроме того, стартовые сильфонные компенсаторы можно использовать в регионах с мягкими климатическими условиями, когда перепады температур теплоносителя относительно средней температуры незначительны и стабильны. При качественном регулировании тепловых нагрузок в пиковые режимы отопления, а также при остывании теплоносителя и его сливе, что довольно часто происходит во многих регионах России, температурные напряжения на трубопровод и неподвижные опоры резко возрастают, что нередко приводит к авариям на стартовых компенсаторах.

Учитывая также сложности при «запуске» стартового компенсатора и ремонтах трубопровода , в большинстве регионов России применяют осевые СК. Иногда при бесканальной прокладке предизолированного теплопровода осевой сильфонный компенсатор помещают в камеру. Но в большинстве случаев применяют теплогидроизолированные СКУ, изготовленные на изоляционных заводах из осевых СК. Конструкции данных СКУ разнообразны (у каждого завода – своя конструкция), но все они имеют общие особенности:

  • гидроизоляция подвижной части СКУ не обеспечивает долговечную защиту от грунтовых вод при многократном циклическом воздействии , что приводит к намоканию тепловой изоляции, усиленной электрохимической коррозии деталей компенсатора и трубопровода, хлоридной коррозии сильфона, чего допускать нельзя , а система оперативно-дистанционного контроля (ОДК) при этом не срабатывает, т.к. сигнальные проводники внутри компенсационного устройства были проложены в изолирующем кембрике по всей его длине (до 4,5 м);
  • из-за недостаточной изгибной жесткости конструкции такого СКУ не обеспечивается защита сильфона от изгибающих моментов, поэтому возрастают требования по соосности трубопровода при монтаже.

О создании надежной конструкции теплогидроизолированного осевого СКУ

Проанализировав особенности существующих конструкций СКУ, ОАО «НПП «Компенсатор» совместно с ОАО «Объединение ВНИПИэнергопром» с 2005 г. вплотную занялось разработкой собственной конструкции полностью теплогидроизолированного осевого СКУ для бесканальной прокладки теплопроводов, обеспечивающей надежную гидроизоляцию от грунтовых вод и защиту сильфона от возможного прогиба трубопровода на протяжении всего срока эксплуатации.

В процессе разработки были испытаны различные варианты узла гидроизоляции от грунтовых вод подвижной части СКУ на циклическую наработку: уплотнительные кольца, изготовленные из резины различных марок; уплотнительные манжеты различных конфигураций профиля; сальниковая набивка. Циклические испытания опытных образцов СКУ с различными конструкциями узла гидроизоляции проводились в ванной, заполненной водно-песчаной взвесью, имитируя наихудшие условия их эксплуатации. Испытания показали, что различные виды уплотнений, работающих в условиях трения, не обеспечивают надежной гидроизоляции по нескольким причинам: возможность попадания песчинок между уплотнением и полиэтиленовой оболочкой, что со временем приведет к нарушению гидроизоляции; а также невозможность обеспечить стабильность качества установки уплотнительных колец или манжет фиксированного размера из-за большого разброса (до 14 мм) допускаемых предельных отклонений диаметра полиэтиленовой оболочки и ее овальности. Лучше всего себя показал узел гидроизоляции с применением сальниковой набивки. Но проконтролировать качество гидроизоляции сальниковой набивкой при изготовлении СКУ не представляется возможным.

Тогда было принято решение применить в качестве узла гидроизоляции дополнительный защитный сильфон в комбинации с сальниковой набивкой (подробное описание конструкции см. в работе ). Опытные образцы СКУ успешно выдержали циклические испытания, и с 2007 г. началось их серийное производство. Основным потребителем данной конструкции СКУ являются предприятия тепловых сетей Республики Беларусь, где требования к качеству и надежности строительства тепловых сетей несколько выше, чем в России. В тепловых сетях России установлено всего несколько десятков таких СКУ из-за относительно высокой их стоимости по сравнению со стоимостью компенсационных устройств, применявшихся ранее.

Тогда же начались серийные поставки упрощенной конструкции теплогидроизолированных СКУ без дополнительного защитного сильфона, но с применением антикоррозионного покрытия рабочего сильфона. Данная конструкция обеспечивает все требования , узел гидроизоляции выполнен с применением сальниковой набивки. За последние 3,5 года такие теплогидроизолированные СКУ нашли широкое применение во многих регионах РФ.

Учитывая пожелания монтажных и эксплуатирующих организаций, а также принимая во внимание высокую стоимость теплогидроизолированных СКУ с дополнительным защитным сильфоном, перед коллективом ОАО «НПП «Компенсатор» была поставлена задача создать менее трудоемкую конструкцию теплогидроизолированного СКУ, обеспечивающего надежную гидроизоляцию от грунтовых вод и «равнодушную» к возможной несоосности трубопровода.

От дополнительного защитного сильфона, значительно увеличивавшего стоимость СКУ, надо было отказываться, и тогда вновь вставал вопрос обеспечения надежной гидроизоляции. Снова рассматривались различные конструктивные решения узла гидроизоляции. От уплотнения, работающего в условиях трения, отказались сразу. Стабильность качества гидроизоляции сальниковой набивкой зависит от «человеческого фактора». Заманчиво было применить резиновую муфту, как это делают на некоторых изоляционных заводах, но проведенные испытания резиновой муфты на осевые перемещения показали, что при сжатии муфта не принимает форму гофра, а в месте стыка происходит ее излом, в котором со временем образуется разрыв муфты. Да и подобрать листовой резиновый материал и клей для него, сохраняющие свои физикомеханические свойства в течение 30 лет, весьма затруднительно, поскольку серийно выпускаемые нашей промышленностью резиновые листы не соответствуют данным требованиям.

В начале 2009 г. была разработана новая конструкция теплогидроизолированного СКУ, в которой учтены все пожелания монтажных и эксплуатирующих организаций: менее трудоемкая при изготовлении и в которой применен принципиально новый узел гидроизоляции. За основу конструкции принята отработанная конструкция СКУ для наземной и канальной прокладок теплопроводов , которые успешно эксплуатируются с 1998 г. Здесь также предусмотрены цилиндрические направляющие опоры, установленные с обеих сторон от сильфона, которые телескопически перемещаются вместе с патрубками компенсационного устройства по внутренней поверхности толстостенного кожуха и защищают сильфон от потери устойчивости при несоосности трубопровода.

Гидроизоляция подвижной части СКУ выполняется с помощью эластичной цельно-отлитой мембраны. Мембрана герметично зафиксирована на конструкции компенсационного устройства. Это позволяет гарантировать полную защиту сильфона и теплоизоляции от проникновения грунтовых вод в течение всего срока службы СКУ. Сама мембрана защищена от грунта и песка плотно набитой сальниковой набивкой. Тем самым, в новой гидроизолированной конструкции компенсационного устройства предусмотрена двухуровневая защита наружной поверхности сильфона и конструкции СКУ в целом.

Сигнальные проводники системы ОДК внутри компенсационного устройства проложены в электроизолирующем термостойком кембрике, перфорированном для возможности срабатывания системы ОДК в случае нарушения герметичности сильфона или гидроизолирующей мембраны, что маловероятно, поскольку нарушение герметичности в данной конструкции сведено к минимуму.

Вся наружная поверхность кожуха СКУ защищена от воздействия внешней среды специально разработанной термоусаживающейся полиэтиленовой манжетой. Также в новой конструкции предусмотрена теплоизоляция сильфона, позволяющая исключить возможность образования конденсата внутри СКУ.

Итак, в новой конструкции СКУ в качестве узла гидроизоляции применено принципиально новое решение – гидрозащитная эластичная мембрана. Что же это такое?

Гидрозащитная эластичная мембрана изготавливается литьем в пресс-формах из смеси на основе специально разработанного каучука и рассчитана на срок службы СКУ до 50 лет при бесканальной прокладке.

Мембрана, применяемая для гидроизоляции в конструкции СКУ, позволяет уйти от использования узла трения, как основного герметизирующего элемента. Специально спроектированная форма мембраны позволяет обеспечить ее беспрепятственное перемещение при температурных деформациях теплопровода относительно неподвижного кожуха СКУ.

Температурные испытания мембраны, проведенные ОАО «Объединение ВНИПИэнергопром», показали, что при температуре 150 ОC мембрана не теряет своих физико-механических свойств и находится в работоспособном состоянии в течение всего срока службы СКУ.

Квалификационные испытания новой конструкции теплогидроизолированного осевого СКУ с мембраной проводились летом 2009 г. совместно с представителями ОАО «Объединение ВНИПИэнергопром» и НП РТ .

При испытаниях СКУ на подтверждение вероятности безотказной работы по циклической наработке были сымитированы наихудшие условия эксплуатации: опытный образец компенсационного устройства был помещен в бочку с водой и подвергнут циклическим испытаниям осевым ходом на сжатие-растяжение. Через каждую 1000 циклов проводились контрольные замеры электрического сопротивления между патрубками СКУ и сигнальными проводниками системы ОДК при испытательном напряжении 500 В.

После отработки назначенной наработки с учетом вероятности безотказной работы (суммарно около 30000 циклов) циклические испытания были прекращены. Опытный образец СКУ был проверен на прочность и герметичность, после чего с него был удален кожух. Разрушений сильфона, мембраны, а также следов проникновения воды во внутрь СКУ не обнаружено.

Межведомственная комиссия по испытаниям «дала добро» на серийное производство теплогидроизолированных СКУ новой конструкции на ОАО «НПП «Компенсатор», которое началось в 2010 г.

По итогам поставок первых партий СКУ новой конструкции на предприятия тепловых сетей были собраны пожелания и предложения проектных и монтажных организаций, на основе анализа которых в конструкцию теплогидроизолированного СКУ были внесены изменения, касающиеся удобства монтажа и теплоизоляции стыка СКУ с трубопроводом, оптимизации массогабаритных характеристик, унификации деталей СКУ. Также был улучшен узел гидроизоляции СКУ с точки зрения повышения его надежности и защиты от механических повреждений.

«ВНИПИэнергопром» ведет постоянный мониторинг, производственные и лабораторные испытания теплогидроизолированных СКУ и иной продукции ОАО «НПП «Компенсатор» для подтверждения их технических характеристик.

Литература

  1. Логунов В.В., Поляков В.Л., Слепченок В.С. Опыт применения осевых сильфонных компенсаторов в тепловых сетях// Новости теплоснабжения. 2007. № 7. С. 47-52.
  2. Максимов Ю.И. Некоторые аспекты проектирования и строительства бесканальных термически напряженных предизолированных трубопроводов с применением стартовых компенсаторов // Новости теплоснабжения. 2008. № 1. С. 24-34.
  3. Игнатов А.А., Ширинян В.Т., Бурганов А.Д. Модернизированное сильфонное компенсационное устройство в ППУ изоляции для тепловых сетей // Новости теплоснабжения. 2008. № 3. С. 52-53.
  4. ГОСТ 30732-2006 Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана с защитной оболочкой. Технические условия.
  5. События и планы НП «Российское теплоснабжение» // Новости теплоснабжения. 2009. № 9. С. 10. Новости теплоснабжения № 4 (апрель), 2011 г.

В процессе эксплуатации трубопроводы изменяют свою температуру в связи с изменением температуры окружающей среды и перекачиваемых жидкостей. Колебание температуры стенки трубопровода приводит к изменению его длины.

Закон изменения длины трубопровода выражается уравнением

Δ=α · l (t y - t o ),

где Δ - удлинение или укорочение трубопровода; а - коэффициент линейного расширения металла труб (для стальных труб α = 0,000012 1/°С); l - длина трубопровода; t y - температура укладки трубопровода; t 0 - температура окружающей среды.

Если концы трубопровода жестко закреплены, то от температурных воздействий в нем возникают термические напряжения растяжения или сжатия, величина которых определяется по закону Гука

где Е - модуль упругости материала трубы (для стали) E = 2,1·10 6 кг/см 2 =2,1·10 5 МПа).

Эти напряжения вызывают в точках закрепления трубопровода усилия, направленные вдоль оси трубопровода, не зависящие от длины, и равные

где σ - напряжение сжатия и растяжения, возникшее в трубе от изменения температуры; F - площадь живого сечения материа­ла трубы.

Величина N может быть очень большой и привести к раз­рушению трубопровода, арматуры, опор, а также нанести повре­ждения оборудованию (насосам, фильтрам и т.п.) и резервуарам.

Изменения длины подземных трубопроводов зависят не только от колебаний температуры, но и от силы трения трубы о грунт, которая препятствует изменениям длины.

Если усилия от термических напряжений не зависят от длины трубопровода, то сила трения трубы о грунт прямо про­порциональна длине трубопровода. Существует такая длина, на которой силы трения могут уравновеситься с термической силой, и трубопровод не будет иметь изменения длины. На участках меньшей длины трубопровод будет передвигаться в грунте.

Предельная длина такого участка 1 max , на котором возмож­но перемещение трубопровода в грунте, определяется по уравне­нию

где δ - толщина стенки трубы, см; k - давление грунта на по­верхность трубы, кг/см 2 ; μ - коэффициент трения трубы о грунт.

5.2. Компенсаторы

Разгрузка трубопроводов от термических напряжений осу­ществляется установкой компенсаторов. Компенсаторы - уст­ройства, позволяющие трубопроводам свободно удлиняться или сокращаться при изменении температуры без повреждения со­единений. Применяются линзовые, сальниковые, гнутые компен­саторы.

При выборе трассы трубопроводов необходимо стремиться к тому, чтобы температурные удлинения одних участков могли бы восприниматься деформациями других, т.е. стремиться к са­мокомпенсации трубопровода, используя для этого все его повороты и изгибы.

Линзовые компенсаторы (рис. 5.5) применяются для ком­пенсации удлинений трубопроводов с рабочим давлением до 0,6 МПа при диаметре от 150 до 1 200 мм.

Рис. 5.5. Компенсаторы линзовые с двумя фланцами

Компенсаторы изготавливают из конических тарелок (штампованных), каждая пара сваренных между собой тарелок образует волну. Количество волн в компенсаторе делают не более 12 во избежание продольного изгиба. Компенсирующая способ­ность линзовых компенсаторов составляет до 350 мм.

Линзовые компенсаторы характеризуются герметичностью,малыми габаритами, простотой изготовления и эксплуатации, но применение их ограничено непри­годностью для больших давлений. Сальниковые компенсато­ры (рис. 5.6) являются осевыми компенсаторами и применяются для давлений до 1,6 МПа. Компен­саторы состоят из чугунного или стального корпуса и входящего в него стакана. Уплотнение между стаканом и корпусом создается сальником. Компенсирующая спо­собность сальниковых компенсации ров составляет от 150 до 500 мм.

Сальниковые компенсатора устанавливаются на трубопроводе с точной укладкой, так как возможные перекосы могут привести к заеданию стакана и разрушения компенсатора. Сальниковые компенсаторы ненадежны в отношение герметичности, требуют постоянного надзора за уплотнением сальников и в связи с этим имеют ограниченное применение. Эти компенсаторы устанавливаются на трубопроводах диаметром от 100 мм и выше для негорючих жидкостей и на паропроводах.

Гнутые компенсаторы имеют П-образную (рис. 5.7), лирообразную, S-образную и другие формы и изго­тавливаются на месте монтажа из тех труб, из которых собирается тру­бопровод. Эти компенсаторы пригод­ны для любых давлений, уравновеше­ны и герметичны. Недостатками их являются значительные габариты.

Любой материал: твердый, жидкий, газообразный в соответствии с законами физики изменяет свой объем пропорционально изменению температуры. Для предметов, длина которых значительно превышает ширину и глубину, например, трубы, главным показателем является продольное расширение по оси - тепловое (температурное) удлинение. Такое явление должно быть обязательно принято в расчет в ходе реализации тех или иных инженерных работ.

К примеру, во время поездки на поезде слышно характерное постукивание из-за термических стыков рельс (рис.1), или при прокладке линий электропередач, провода монтируют, так чтобы они провисали между опорами (рис.2).

рис.4

Все тоже самое происходит и в инженерной сантехнике. Под воздействием температурных удлинений, при применении несоответствующих случаю материалов и отсутствию мероприятий по тепловой компенсации в системе, трубы провисают (рис.4 справа), увеличиваются усилия на элементах крепления неподвижных опор и на элементы инсталляции, что уменьшает долговечность системы в целом, а, в крайних случаях, может привести и к аварии.

Увеличение длины трубопровода рассчитывается по формуле:

ΔL - увеличение длины элемента [м]

α - коэффициент теплового расширения материала

lo - начальная длина элемента [м]

T2 - температура конечная [K]

T1 - температура начальная [K]

Компенсация тепловых расширений для трубопроводов инженерных систем осуществляется преимущественно тремя способами:

  • естественная компенсация за счет изменения направления трассы трубопровода;
  • использование элементов компенсации, которые в состоянии погасить линейные расширения труб (компенсаторы);
  • предварительная натяжка труб (данный способ достаточно опасен и должен быть использован с крайней осторожностью).

рис.5


Естественная компенсация используется в основном при “скрытом” способе монтажа и представляет собой прокладку труб произвольными дугами (рис.5). Этот способ подходит для полимерных труб малой жесткости, таких как трубопроводы Системы KAN-therm Push: PE-X или PE-RT. Данное требование указано в СП 41-09-2005 (Проектирование и монтаж внутренних систем водоснабжения и отопления зданий с использованием труб из “сшитого” полиэтилена) в п. 4.1.11 В случае прокладки труб ПЭ-С в конструкции пола не допускается натягивание по прямой линии, а следует укладывать их дугами малой кривизны (змейкой) (...)

Такая укладка имеет смысл при монтаже трубопроводов по принципу “труба в трубе”, т.е. в трубе гофрированной или в трубной теплоизоляции, что указано не только в СП 41-09-2005, но и в СП 60.13330-2012 (Отопление, вентиляция и кондиционирование воздуха) в п.6.3.3 …Прокладку трубопроводов из полимерных труб следует предусматривать скрытой: в полу (в гофротрубе)…

Тепловое удлинение трубопроводов компенсируется за счет пустот в защитных гофрированных трубах или теплоизоляции.

При выполнении компенсации такого типа следует обращать внимание на исправность фитингов. Чрезмерное напряжение, возникающее из-за изгиба труб, могут привести к образованию трещин на тройнике (рис. 6). Чтобы этого гарантировано избежать, изменение направления трассы трубопроводов должно происходить на расстоянии - минимум 10 наружных диаметров от штуцера фитинга, а труба рядом с фитингом должна быть жестко закреплена, это, в свою очередь, минимизирует воздействие изгибающих нагрузок на штуцеры фитинга.

рис.6

Еще одним видом естественной температурной компенсации является, так называемое, “жесткое” крепление трубопроводов. Оно представляет собой разбивку трубопровода на ограниченные участки температурной компенсации таким образом, чтобы минимальное увеличение трубы значимым образом не влияло на линейность ее прокладки, а излишние напряжения уходили в усилия на крепления точек неподвижных опор (рис.7).

рис.7

Компенсация этого типа работает на продольный изгиб. Для защиты трубопроводов от повреждения необходимо разделить трубопровод точками неподвижных опор на участки компенсации не более 5 м. Следует обратить внимание, что при такой прокладке на крепления трубопроводов воздействует не только вес оборудования, но и напряжения от температурных удлинений. Это ведет к необходимости каждый раз рассчитывать предельно допустимую нагрузку на каждую из опор.

Силы, возникающие от тепловых удлинений и воздействующие на точки неподвижной опоры, рассчитываются по следующей формуле:

DZ - наружный диаметр трубопровода [мм]

s - толщина стенки трубопровода [мм]

α - коэффициент теплового удлинения трубы

E - модуль упругости (Юнга) материала трубы [Н/мм]

ΔT - изменение (прирост) температуры [K]

Кроме этого, на точку неподвижной опоры также действует собственный вес отрезка трубопровода, заполненного теплоносителем. На практике основной проблей является то, что ни один производитель крепежа не дает данных по предельно допустимым нагрузкам на свои элементы креплений.

Естественными компенсаторами температурных удлинений являются Г,П,Z-образные компенсаторы. Это решение применяется в местах, где возможно перенаправить свободные термические удлинения трубопроводов в другую плоскость (рис. 8).

рис.8

Размер компенсационного плеча для компенсаторов типа „Г” „П” и „Z” определяется в зависимости от полученных тепловых удлинений, типа материала и диаметра трубопровода. Расчет выполняется по формуле:

[м]

K - константа материала трубы

Dz - наружный диаметр трубопровода [м]

ΔL - тепловое удлинение отрезка трубопровода [м]

Константа материала K связана с напряжениями, которые может выдержать данный тип материала трубопровод. Для отдельных Систем KAN-therm значения постоянной материала K представлены ниже:

Push PlatinumK = 33

Компенсационное плечо компенсатора типа „Г” :

A - длина компенсационного плеча

L - начальная длина отрезка трубопровода

ΔL - удлинение отрезка трубопровода

PP - подвижная опора

A - длина компенсационного плеча

PS - точка неподвижной опоры (неподвижная фиксация) трубопровода

S - ширина компенсатора

Для расчета компенсационного плеча А необходимо принять за эквивалентную длину Lэ большее из значений L1 и L2. Ширина S должна составлять S = A/2, но не менее 150 мм.

A - длина компенсационного плеча

L1, L2 - начальная длина отрезков

ΔLx - удлинение отрезка трубопровода

PS - точка неподвижной опоры (неподвижная фиксация) трубопровода

Для расчета компенсационного плеча необходимо принять за эквивалентную длину Lэ сумму длин отрезков L1 и L2: Lэ = L1+L2.

рис.9


Кроме геометрических температурных компенсаторов существует большое количество конструктивных решений такого вида элементов:

  • сильфонные компенсаторы,
  • эластомерные компенсаторы,
  • тканевые компенсаторы,
  • петлеобразные компенсаторы.

Ввиду относительно высокой цены некоторых вариантов, такие компенсаторы чаще всего применяются в местах, где ограничено пространство или технические возможности геометрических компенсаторов или естественной компенсации. Эти компенсаторы имеют ограниченный срок эксплуатации, рассчитанный в рабочих циклах - от полного расширения до полного сжатия. По этой причине для оборудования, работающего циклически или с переменными параметрами, трудно определить конечное время эксплуатации устройства.

Сильфонные компенсаторы для компенсации тепловых удлинений используют упругость материала сильфона. Сильфоны часто изготавливаются из нержавеющей стали. Такая конструкция определяет срок службы элемента - приблизительно 1000 циклов.

Срок службы осевых компенсаторов сильфонного типа значительно снижается в случае несоосного монтажа компенсатора. Эта особенность требует высокой точности их монтажа, а также их правильного крепления:

  • возможно монтировать не более одного компенсатора на участке температурной компенсации между 2 соседними точками неподвижных опор;
  • подвижные опоры должны полностью охватывать трубы и не создавать большого сопротивления компенсации. Максимальный размер люфтов не более 1 мм;
  • осевой компенсатор рекомендуется, для большей стабильности, устанавливать на расстоянии 4Dn от одной из неподвижных опор;
  • Если у Вас возникают вопросы по температурным компенсациям трубопроводов Системы KAN-therm, Вы можете обратиться к .

Статьи по теме: