Снип прогрев бетона в зимнее время. Прогрев бетона в зимнее время. Обогрев бетона нагревательным проводом

Бетон – это очень популярный на сегодняшний день строительный материал, для изготовления которого применяют такие компоненты, как цемент, вода, заполнитель и вода. Но одно дело, когда вы производите заливку бетона летом, ведь теплое время года благоприятно влияет на процесс набора прочности. Что же происходит зимой? При сильных морозах набор прочностных характеристик прекращается, а это крайне нежелательно. В этом случае необходимо применять ряд мероприятия, которые позволят прогревать бетон. Для этого нужно знать все особенности технологической карты бетона на зимний период и актуальные способы прогрева.

Технологическая карта и способы прогрева бетона

Прогревать сварочным аппаратом

Этот метод прогрева предполагает применение следующих материалов:

  • кусков арматуры;
  • лампы накаливания и градусника для измерения температуры.

Процесс установки кусков арматуры выполняется параллельно цепи, с примыкающими и прямыми проводами, между которыми монтируется лампа наливания. Именно благодаря ей будет возможным производить измерения напряжения.

Чтобы померить температуры, стоит задействовать градусник. По времени этот процесс занимает много времени, примерно 2 месяца. При этом на весь процесс прогревания необходимо оградить конструкцию от влияния холода и воды. Применять обогрев сварочным аппаратом целесообразно при малом объеме бетона и отличных условиях погоды.

Инфракрасный метод

Смысл этого метода состоит в том, что ведется установка оснащения, работа которого выполняется в инфракрасном диапазоне. В результате этого удается преобразовать излучение в тепло. Именно тепловая энергия внедряется в материал.

Инфракрасный подогрев бетонной смеси представляет собой электромагнитные колебания, у которых скорость распространения волны будет составлять 2,98*108 м/с и длина волны 0,76-1, 000 мкм. Очень часто в роли генератора задействуют трубки, выполненные из кварца и металла.

Главной особенностью представленной технологии является возможность питания энергией от обычного переменного тока. При инфракрасном обогреве бетона параметр мощности может меняться. Она зависит от необходимого температурного режима нагревания.

Благодаря лучам энергия может проникать в более глубокие слои. Для достижения необходимой эффективности процесс обогрева должен выполняться плавно и постепенно. Здесь запрещено работать при высоких показателях мощности, иначе верхний слой будет иметь высокую температуру, что в конечном результате приведет к потере прочности. Применять такой метод необходимо в случаи, когда нужно разогреть тонкие слои конструкции, а также подготовить раствор для ускорения времени сцепки.

Какие существуют плюсы и минусы дома из газобетона, указано в данной

Индукционный метод

Для осуществления этого метода необходимо задействовать энергию переменного тока, которая будет преобразовываться в тепловую в опалубке или арматуре, выполненной из стали.

После преобразованная тепловая энергия будет распространяться на материал. Применять индукционный метод обогрева целесообразно при обогреве железобетонных каркасных конструкций. Это могут быть ригели, балки, колонны.

Если использовать индукционный прогрев бетона по внешним поверхностям опалубки, то здесь необходимо выполнить монтаж последовательных витков, которые изолированы от индукторов и проводом, а число и шаг определяется расчетным путем. С учетом полученных результатов удается изготовить шаблоны с пазами.

Когда индуктор был установлен, то можно выполнять обогрев арматурного каркаса или стыка. Делается это для того, что удалить наледь до того, как будет происходить бетонирование. Теперь открытые поверхности опалубки и конструкции можно укрыть при помощи теплоизоляционного материала. Только после обустройства скважин можно приступать к непосредственной работе.

Когда смесь примет необходимый температурный режим, то процедуру обогрева прекращают. Следите, чтобы опытные показатели отличались от расчетных не менее чем на 5 градусов. Скорость остывания может сохранить свои пределы 5-15 С/ч.

Применение трансформаторов

Для повышения температурного режима в бетоне можно воспользоваться таким недорогим и простым методом, как нагревательный провод ПНСВ.

Конструкция этого кабеля предусматривает два элемента:

  • однопроволочная жила круглой формы, выполненная из стали;
  • изоляция, для которой можно задействовать ПВХ пластик или полиэтилен.

Если вам необходимо обогреть смесь 40-80 м3, то для этого будет достаточно установить всего лишь одну трансформаторную подстанцию. Применяют такой метод в том случае, когда на улице температура воздуха достигла отметки -30 градусов. Использовать трансформаторы целесообразно для обогрева монолитных конструкций. Для 1 м веса будет достаточно провода в 60 м.

Какие производители автоклавного газобетона существуют, указано в данной

Выполняется такая манипуляция по следующей инструкции:

  1. Внутрь бетона укладывают нагревательный провод. Его подсоединяют к станции или выводам трансформатора.
  2. При помощи электрического тока массив начинает набирать температуру, в результате чего ему удается затвердеть.
  3. так как материал обладает отличными свойствами проводимости тепловой энергии, тепло с высокой скоростью начинает двигаться по всему массиву.

Таблица 1 – Характеристика проводов марки ПНСВ

1 Напряжение переменного тока, В 380
2 Длина секции кабеля на напряжение 220 В:
– ПНСВ1,0 мм, м 80
– ПНСВ1,2 мм, м 110
– ПНСВ1,4 мм, м 140
3 Удельная мощность тепловыделения кабеля:
– для армированных установок, Вт/п.м. 30-35
– для неармированных установок, Вт/п.м. 35-40
4 Напряжение питания рекомендуемое, В 55-100
5 Среднее значение сопротивления жилы:
– ПНСВ1,2 мм, Ом/м 0,15
– ПНСВ1,4 мм, Ом/м 0,10
6 Параметры метода:
– Мощность удельная, кВт/м3 1,5-2,5
– Расход провода, п.м./м3 50-60
– Цикл термосного выдерживания конструкций, суток 2-3

Провод для обогрева, который уложен внутрь бетона, должен обогревать конструкцию до 80 градусов. Электропрогрев происходить при помощи трансформаторных подстанций КПТ ТО-80. Для такой установки характерно наличие нескольких ступеней низкого напряжения. Благодаря этому становится возможным выполнять регулировку мощности нагревательных кабелей, а также подгонят ее согласно измененной температуре воздуха.

Использование кабеля

Использование такого варианта прогрева не требует больших затрат электроэнергии и дополнительного оснащения.

Весь процесс протекает по следующей схеме:

  1. Ведется установка кабеля на бетонное основание перед заливкой раствора.
  2. Все зафиксировать, используя крепежные детали.
  3. Будьте внимательны во время установки кабеля и го эксплуатации, чтобы на его поверхности не возникли повреждения.
  4. Выполнить подключение кабеля в низковольтный электрический шкаф.

Противоморозные добавки

При добавлении противоморозных добавок бетон способен противостоять самым агрессивным атмосферным осадкам. Входящие в состав такой смеси компоненты могут быть самые различные, но роль главного отведена антифризу. Это жидкость, которая не позволяет воде замерзать.

Если необходимо взвести конструкции из железобетона, то в составе смеси должен находиться нитрит натрия и формат натрия. Главной особенностью противоморозных смесей остается сохранение антикоррозийных и физико-химических свойств при низком температурном режиме.

При возведении товарного бетона, производстве бордюров необходимо задействовать смесь, в составе которой имеется хлорид кальция. Этот компонент позволяет добиться быстрой скорости затвердения, устойчивости к низкому температурному режиму.

Идеальной противоморозной добавкой остается такое химическое вещество, как поташ. Оно очень быстро растворяется в воде, при этом отсутствует коррозия. Если вы будет применять поташ при прогреве бетона зимой, то удастся сэкономить на строительных материалах.

Если вы используете противоморозные добавки, то очень важно придерживаться всех норм безопасности. Например, не стоит задействовать бетон с такими компонентами, когда конструкция расположена под напряжением, возводятся монолитные дымовые трубы.

СНиП

Все мероприятия по монтажу и строительству нужно выполнять в соответствии с установленными нормами. Процесс бетонирования в зимнее время не считается исключением. Прогрев бетонной конструкции при низких температурах воздуха происходят согласно следующих документов:

  • СНиП 3.03.01-87 – Несущие и ограждающие конструкции
  • СНиП 3.06.04-91 – Мосты и трубы

На видео – прогрев бетона в зимнее время, технологическая карта:

Несмотря на то, что представленная документация лишь косвенно затрагивает тему, связанную с прогревом бетона, в ней содержатся определенные разделы, в которых имеется технология заливки бетонного раствора в морозное время года.

Расчет времени

При расчете прогрева бетона необходимо принимать во внимание таки факторы, как тип конструкции, общую площадь обогрева, объем бетона и электрическую мощность.

Во время обогревательных работ с бетоном стоит разработать технологическую карту. В нее будут вписаны все значения лабораторных наблюдений, а также время прогрева и время затвердения материала.

Расчет прогрева бетона начинается с выбора схемы. Например, чаще всего выбирают четырехстадийную. Первая стадия предполагает собой выдерживание материала. После этого показатели температуры повышают до конкретного значения, осуществляют обогрев и остывание длительность выдерживания перед началом мероприятия примерно 1-3 часа при низком температурном режиме. Поле этого можно переходить к расчету обогрева, которое находится в прямой зависимости от скорости и итоговой температуры.

На протяжении всего процесса стоит вести контроль температуры, отмечая все результаты при повышении через 30-60 минут, а при остывании контролирование осуществляют 1 раз за смену. При нарушении режима необходимо поддерживать все параметры, отключив ток и повысив напряжение. В таком случае показатели фактические и полученные в ходе расчета могут не совпадать. После этого строят график зависимости времени от прочности, где обозначают необходимое значение времени и температуры обогрева, а после отыскивают необходимое значение прочности.

Процесс обогрева бетона – это очень важные мероприятия, без проведения которых бетонная конструкция при морозах просто перестанет набирать прочность, в результате чего это приведет к понижению марки и дальнейшему разрушению. Осуществить все эти мероприятия несложно, достаточно просто определить, какой из представленных подходит вам больше всего.

  • 7. Производительность транспорта цикличного действия, методика её расчета. Транспортирование грунта транспортом цикличного действия
  • 8. Способы производства земляных работ и условия их применения.
  • 9. Технология разработки грунта экскаваторами с рабочим оборудованием «драглайн»
  • 10. Технология разработки грунтов экскаваторами с рабочим оборудованием «прямая лопата»
  • 11. Технология разработки грунтов с рабочим обору­дованием «обратная лопата»
  • 12. Производительность одноковшовых экскаваторов, методика её расчёта и пути ее повышения
  • 13. Технология разработки грунта бульдозерами. Способы разработки, схемы рабочих перемещений и их характеристики
  • 14. Производительность бульдозеров, методика ее расчёта
  • 15. Технология разработки грунтов скреперами. Способы разработки, схемы рабочих перемещений и их характеристика.
  • 16. Производительность скреперов, методика её расчета
  • 17. Факторы, влияющие на интенсивность уплотнения грунтов и их характеристика
  • 18. Способы уплотнения грунта, их характеристика и условия применения
  • 19. Технология уплотнения грунта машинами стати­стического и динамического действия
  • 20. Производительность грунтоуплотняющих машин,
  • 21. Технологические особенности разработки грунтов в зимнее время
  • 22.1. Технология приготовления бетонной смеси
  • 57. Общие положения по реконструкции зданий и сооружений.
  • 23.1.Технология укладки бетонной смеси в блоки бетонирования.
  • 24. Технология специальных способов бетонирования, их характеристика и условия применения
  • 25. Технология производства бетонных работ в зимнее время
  • 26. Дефекты бетонной кладки и способы ее устране­ния. Уход за уложенной бетонной смесью
  • 27. Контроль качества бетонных работ
  • 28. Технология погружения свай
  • 29. Технология устройства набивных свай
  • 30. Приемка свайных работ. Контроль качества
  • 31. Основные технологические схемы монтажа желе­зобетонных конструкций
  • 32. Состав работ по монтажу сварных конструкций на строительной площадке
  • 33. Особенности монтажа железобетонных конструк­ций в зимних условиях
  • 34.1. Виды каменных работ. Растворы для каменной кладки
  • 35. Технология производства каменной кладки
  • 36. Особенности каменных работ в зимнее время
  • 37. Назначение и виды гидроизоляционных работ (гир)
  • 38. Технология производства гидроизоляционных работ
  • 39. Технология производства теплоизоляционных работ.
  • 40. Особенности производства гир в зимних условиях
  • 41.Особенности устройства теплоизоляции в зимних условиях.
  • 42.1.Виды кровель и технология устройства кровли
  • 43. Особенности выполнения работ по устройству кровли в зимних условиях
  • 45. Особенности производства штукатурных работ в зимних условиях
  • 44. Технология подготовки поверхностей под штука­турку и оштукатуривание поверхностей
  • 46. Производство работ по облицовке зданий различ­ными материалами
  • 47. Особенности производства облицовочных работ в зимних условиях
  • 48. Подготовка поверхностей, нанесение и обработка подготовленных слоёв под окраску
  • 51. Малярные и обойные работы, выполняемые в зимних условиях
  • 49. Окраска внутренних и наружных поверхностей конструкций
  • 50. Технология оклейки поверхностей обоями
  • 52.1. Технология устройства полов из различных материалов
  • 53. Технология строительства земполотна и дорож­ной одежды (усовершенствованного капитального и переходного типов)
  • 59. Бетонные и железобетонные работы
  • 54. Дорожные одежды с покрытиями переходных типов.
  • 55. Дорожные одежды усовершенствованных типов.
  • 56. Контроль качества при строительстве дорог
  • 58. Разборка и ликвидация зданий и сооружений
  • 60. Демонтаж строительных конструкций. Усиление строительных конструкций
  • 25. Технология производства бетонных работ в зимнее время

    Особенностью и требованием при зимнем бетонирова­нии является создание такого режима укладки и твердения бетона, при котором он к моменту замерза­ния приобретает необходимую прочность, называемую критической . Пределы такой прочности указаны в СНиПе.

    Способы укладки бетона зимой определяются приме­няемыми способами его выдерживания. На практике применяют как безобогревные способы выдерживания (способ термоса), так и способы искусственного подогрева или прогрева конструкций (электротермо­обработка бетона, применение греющей опалубки и покрытий, обогрев паром, горячим воздухом или в тепляках).

    1. К общим приемам ускорения набора прочности относятся: применение цементов высокой активности; минимальное значение В/Ц; высокая частота исходных материалов; большая продолжительность перемешива­ния смеси; тщательное уплотнение бетонной смеси.

    2. Применение противоморозных добавок (хлорида натрия в сочетании с хлоридом кальция, нитрата натрия, поташа и др.), обеспечивающих твердение при отрицательных температурах. Это позволяет транс­портировать смесь в неутепленной таре и укладывать ее на морозе. Смесь с противоморозными добавками укладывают в конструкции и уплотняют с соблюдением общих правил укладки бетона.

    3. Подогрев материалов на месте приготовления бетона (метод «термоса»): подогрев исходных матери­алов паром (в штабелях на складе, в промежуточных бункерах, в расходных бункерах); утепленная опалубка (доски толщиной 40 мм и 1…2 слоя толя, двойная пустотелая опалубка со слоем опилок и т.п.); электро­разогрев бетонной смеси перед укладкой в специаль­ных бадьях.

    4. Подогрев бетона на месте укладки в блоки: электропрогрев (поверхностными и глубинными электродами, в термоактивной опалубке, электро­нагревательными приборами). Электродный прогрев бетона обеспечивается через электроды, располагае­мые внутри или на поверхности бетона. Соседние или противоположные электроды подсоединяют к проводам разных фаз, в результате чего между электродами в бетоне возникает электрическое поле, прогревая его. Ток в армированных конструкциях пропускают напря­жением 50-120 В, а в неармированных - 127-380 В. При прохождении тока бетон нагревается и в течение 1,5-2 сут. приобретает распалубочную прочность; обогрев в тепляках и шатрах (внутри шатра производят подогрев воздуха) является эффективным и прогрес­сивным способом зимнего бетонирования; обогрев теплым воздухом от калориферов; паропрогрев со специальной опалубкой.

    26. Дефекты бетонной кладки и способы ее устране­ния. Уход за уложенной бетонной смесью

    Причины появления дефектов укладки бетонной смеси: несоответствие бетонной смеси требованиям ГОСТа или условиям блока укладки (размеры, армированность); нарушение технологии укладки бетона.

    Дефекты укладки: раковины, расслоение бетона, наплывы, ноздреватость поверхности, волосные трещины. Раковины – пустоты в блоке, не заполненные бетоном или заполненные отощенным бетоном (гравий без цементного раствора). Причины их появления - поступления на место укладки бетона, содержащего гравий недопустимой крупности по размерам блока и по густоте его армирования; из-за вытекания цементного раствора через щели в опалубке и на стыках опалубки; в связи с плохим уплотнением. Чаще всего они появляются в трудно прорабатываемых частях блоков. Наружные раковины обнаруживаются при распалубке, а внутри блока они не могут быть обнаружены.

    Для устранения внутренних раковин применяют цементацию нагнетанием цементного раствора растворонасосами через выполненные в бетоне шпуры. Наружные раковины раскирковывают, удаляют отощен­ный пористый бетон до здорового бетона и заделы­вают бетоном, содержащим мелкий гравий.

    Причины расслоения бетона - излишне продолжи­тельное вибрирование при уплотнении, сбрасывание его в блок с большой высоты. Дефект расслоения неустраним. Уложенный бетон с таким дефектом должен быть удален и заменен.

    Наплывы цементного молока и ноздреватая поверх­ность бетона появляются на стыке между поверхно­стью бетона и опалубкой в результате подтекания цементного молока при уплотнении вышележащих слоев бетона и защемления пузырьков воздуха. Их устраняют при подготовке поверхности строительного блока к бетонированию смежного блока.

    Волосные трещины в бетоне появляются в резуль­тате усадки его и свидетельствуют о нерациональном составе бетонной смеси (в частности, избыток цемента), о завышенных размерах строительных блоков и больших температурных напряжениях или плохом уходе (быстрое иссушение). Дефект этот неустраним.

    Ликвидация устранимых дефектов заключается в вырубке некачественного бетона, очистке вырублен­ного место от грязи, пыли до здорового бетона и подготовке поверхности так же, как в строительном шве. За вновь уложенным в дефектном месте бетоном должен быть обеспечен уход в соответствии с изложенными ранее правилами до набора им нужной прочности.

    Уход за уложенным бетоном заключается в защите его от механических повреждений, преждевременных нагрузок, в поддержании его во влажном состоянии, в отводе избытков тепла от крупных блоков, поддержа­нии положительных температур зимой, недопущении преждевременного снятия опалубки. Без ухода и при плохом уходе за твердеющим бетоном наблюдается резкое понижение его прочности. Свежеуложенный бетон до получения первоначальной прочности в течение 10...12 ч следует защищать от хождения и проезда по нему, а также от сотрясения при работе строительных машин.

    В первые дни после укладки он должен находиться в теплой и влажной среде. Наилучшая температура твердения 15...20°С. Поэтому в стадии ухода за бетоном его поливают, укрывают от солнца соломен­ными матами, рогожей, брезентом.

    Увлажняют бетон из шлангов рассеянной струей в виде дождя. Эту операцию начинают сразу же после того, как установлено, что из схватившегося бетона при действии на него водой не будут вымываться частицы цемента.

    Поливают бетон при температурах воздуха выше 5°С, начиная ее в обычных условиях через 10...12 ч, а в жаркую сухую погоду через 2...4 ч после укладки и продолжая в течение 3...14 сут с интервалом от 3 до 8 ч. Расход воды на полив не менее 6 л/м 2 .

    Пока бетон находится в опалубке, ее смачивают. После распалубки смачивают и защищают распалублен­ную поверхность. При температуре ниже 5°С полив прекращают и бетон укрывают рогожей или брезентом.

    Уход за бетоном значительно упрощается при по­крытии его влагозащитными пленками, прокраской в 1...2 слоя одним из следующих материалов: битумные или дегтевые эмульсии, нефтебитумные растворы, лак этиноль, латекс синтетического каучука и др. Пленкообразующие материалы наносят на просохшую поверхность уложенного бетона. Расход материалов от 300 до 700 г/м 2 . После высыхания слоя поверхность бетона, засыпают на 20...25 сут слоем песка толщиной 3...4 см.

    Покрытие пленкообразующими материалами допустимо только в конструктивных швах и на самой верхней открытой части бетонной конструкции. В строитель­ных швах прокраска недопустима.

    Методы прогрева бетона в зимний период при минусовых температурах сегодня многочисленны. Они отличаются соблюдением специфических правил и требований при применении технологий. Выбор зависит от локальных условий, температуры воздуха в период года, когда проводятся работы.

    Какой бы способ не был выбран, при прогреве бетона зимой следует досконально соблюдать условия процесса, сочетающего комплекс мер, применяемых при возведении сооружений монолитного и любого другого типа.

    Основное требование к зимним работам по бетонированию – выполнение процесса в заданном темпе и строгой последовательности. Благодаря безошибочности действий с соблюдением технологического регламента добиваются гарантированного качества конструкций и оснований, заливаемых при минусовых температурах. Условия профессиональных бетонных работ регламентируются:

    • нормами и правилами СНиП 3.03.01-87;
    • СНиП 3.06.04-91;
    • несколькими другими документами, на основе которых разработаны строительные стандарты для районов с холодным климатом.

    Запрещено выполнять прогрев бетона в зимнее время с отступлениями от проекта строительных работ.

    Основные методы прогрева бетона

    Существует несколько методов прогрева бетона в зимний период. Следует понимать, что при применении технологий не всегда ведущим параметром становится цена. Зачастую при незначительном увеличении расходов получают результаты в разы технологичнее и прочнее аналогов.

    Метод термоса

    Один из давних и недорогих способов бетонирования на морозе – метод термоса. В его основе лежит эффект гидратации. Он основан на том, что экзотермическая теплота, выделяемая в процессе отвердения бетона, суммируется с теплотой, занесенной в смесь еще при изготовлении бетона на заводе.

    • Привезенный с завода бетон доставляют на объект с максимально высокой, насколько это возможно, температурой.
    • При этом раствор следует быстро поместить в подготовленную заранее опалубку и укрыть теплоизоляцией.
    • Во время гидратационного процесса 1 кг смеси выделяет примерно 80 килокалорий тепла, что способствует получению бетонных изделий с критической прочностью, приобретаемой ко времени замерзания.

    Метод на основе комплексных противоморозных добавок

    При выборе противоморозных добавок необходимо строго соблюдать технологию и придерживаться следующих требований:

    • термическое сопротивление опалубки должно быть выше расчетного значения (только в этом случае бетон способен достигнуть отметки критической прочности);
    • тонкие элементы конструкции, выступы и прочие части, которые остывают/затвердевают быстрее, чем основание, должны подогреваться дополнительно (так достигается равномерное твердение бетона);
    • поверхность конструкции, незащищенную опалубкой для предотвращения потери влаги или, наоборот, исключения переувлажнения за счет чрезмерного попадания снега по отвердевании, нужно укрыть гидроизоляцией (используют полиэтилен или другие плотные материалы);
    • при явной угрозе падения температуры ниже расчетного значения (следите за прогнозами по местности) конструкцию нужно либо утеплять, либо подогревать.

    Электропрогрев бетона

    Самый экономичный способ термообработки бетона – электропрогрев, а именно электродный прогрев бетона. Электроток проходит через проводник, которым является бетон, и разогревает изнутри весь объем раствора. Метод отлично зарекомендовал себя в армированных и малоармированных блоках, ростверках фундамента.

    Важно: использование электродов для конструкций с большим количеством арматуры крайне нежелательно.

    Периферийный прогрев выполняют с помощью ленточных электродов, изготовленных из широких полос кровельной, стали, закрепленных на опалубке. В качестве стержневых электродов используют стальную гладкую арматуру толщиной от 5 мм.

    Подключение электродов выполняется отпайками (отводами). Соединение отпайки с электродом идет путем скрутки, с применением петель, кольца или зажима. Для подключения необходимо использовать понижающий трансформатор или сварочный аппарат. После отвердевания бетона электроды остаются внутри, контакты, выглядывающие наружу, обрезают.

    Альтернативой электродному способу прогрева выступают инновационные термоэлектроматы «ФлексиХИТ». Они в 4,4 раза сокращают энергозатраты.

    • При использовании термомата инфракрасные лучи равномерно прогревают конструкцию. Марочный бетон за 11 часов набирает прочность, которую он приобрел бы за 28 суток в естественных условиях.
    • С их помощью избавляются от лишних конструкций. Важная характеристика термомата – скорость укладки., Оборудуя фундаменты и ростверки термоматами для прогрева буронабивных бетонных свай повышается скорость гидратации.
    • Мастеру потребуется всего полчаса на монтаж термоматов, а при подключении электродов тратится минимум полдня на сборку схемы и присоединение ее к источнику напряжения.

    Обогрев бетона в опалубке

    Способ греющей опалубки подразумевает передачу тепла от нее наружным слоям бетонной конструкции. Оттуда нагрев идет в толще бетона за счет теплопроводности. Альтернатива греющей опалубке – монтаж все тех же термоматов «ФлексиХИТ» с аналогичными выгодами.

    • Оба способа используются для тонкостенных и средней величины бетонных стен с армированием и без него.
    • Тепло от опалубки или ИК-нагрева термоматом компенсирует тепловые потери пристенными слоями бетона в крупных монолитных блоках большой массы и объема. В основе — принцип «регулируемый термос» для фундамента.
    • Однако если в виде нагревающей опалубки для бетона используют греющие провода и углеграфитовые изолируемые стеклотканью ленты размером 10 см, то применение термомата заключается в плотном прилегании изделия к поверхности ростверка.

    В том и другом случае для поддержания изотермического процесса необходимо избегать появления воздушных прослоек, по возможности утеплить конструкцию. Монтаж оборудования для нагрева происходит с наружной стороны опалубки.

    Применение для обогрева греющего провода, 2-сегментного или цельного термомата

    В основе традиционного способа — выделение тепла от проводника, находящегося в конструкции. Обогрев идет путем кондуктивного тепловыделения.

    Новейший способ, используемый для изготовления колонн в зимнее время, основан на применении цельных термоматов или 2-сегментных инфракрасных обогревателей для прогрева бетонных колонн. Устройства оборудованы встроенным терморегулятором в каждом сегменте нагревающего устройства.


    Цельный термомат применяется, если размер колонны известен заранее. При производстве перекрытий и балок термоэлектроматы укладывают в нижней части бетонируемого изделия.

    Способ воздушного прогрева

    Способ воздушного прогрева бетона относится к конвективному типу и заключается в равномерном нагреве конструкции от подводимого снаружи теплого воздуха. Применяют для этого гибкий шланг или прорезиненный рукав. Воздух вырабатывает теплогенератор, запитанный от электросети переменного напряжения или работающий на дизтопливе.

    Воздушный обогрев используется для заливки бетоном опалубки в закрытом пространстве с воздушной циркуляцией воздуха, усиленной вентилятором для равномерного прогрева бетона. При воздушном обогреве рекомендуется применение утепленных брезентовых воздухонепроницаемых материалов для создания тепляка над бетонной конструкции.

    Контроль за проведением бетонных работ в зимнее время

    Согласно нормам СНиП 152-01-2003 качество бетонных изделий подтверждается после проведения контрольных мероприятий. Используется контроль:

    • входной (проверяется соответствие смеси наличию всех составляющих);
    • операционный контроль (производится во время выполнения действий укладки и прочих работ);
    • приемочный контроль (проверка качества конструкции в целом).

    Таким образом, проверяется правильность принципа бетонирования фундамента и возведения монолитных конструкций в зимнее время.

    Способов бетонирования зимой много. Они широко используется в районах с холодным климатом. Современные методы с использованием инфракрасного прогрева более эффективны и безопасны, именно поэтому их все чаще выбирают квалифицированные мастера.

    Совет! Если вам нужны подрядчики, есть очень удобный сервис по их подбору. Просто отправьте в форме ниже подробное описание работ которые нужно выполнить и к вам на почту придут предложения с ценами от строительных бригад и фирм. Вы сможете посмотреть отзывы о каждой из них и фотографии с примерами работ. Это БЕСПЛАТНО и ни к чему не обязывает.

    На сегодняшний день благодаря тому, что современные технологии позволяют продолжать строительные работы даже в зимнее время, готовые объекты могут сдаваться ровно в срок и с гарантией качества. Даже в зимнее время бетонные конструкции продолжают строиться и работы не останавливаются из-за погодных условий.

    При бетонировании любых конструкций в зимний сезон при минусовой отметке требуется соблюдение специальных температурных условий для твердеющего бетона. Главное условие для качественного застывания бетонной смеси – не дать температуре опуститься ниже технически обусловленной отметки.

    Для того чтобы обеспечить прочность бетону во время его застывания, необходимо соблюсти и выдержать температурный режим.

    Зачем зимой прогревать бетон

    Чтобы понять, откуда и почему в бетоне появляются трещины, необходимо знать принцип его заливания и правила его застывания. При замешивании в ручном режиме бетонного раствора к сухой смеси добавляется вода. Именно излишки воды при минусовой температуре замерзают в растворе, из-за чего образовываются немаленькие кристаллики льда, а также возникает сильное давление в порах цементной смеси, все это приводит к разрушению незастывшего бетонного раствора и сильному снижению его прочности после застывания. Наиболее критичным является замерзание во время схватывания.

    Главным условием, которое должно соблюдаться при выдерживании и застывании бетона – это правильный температурный режим. Если все требования будут соблюдены, то прочность бетона будет максимальной. При снижении температуры вода с цементом взаимодействует медленнее, а при повышении градусов – ускоряется. Поэтому во время бетонирования больших монолитных конструкций зимой необходимо соблюдать правильные температурно-влажностные условия, которые позволят набрать максимальную прочность бетона за минимальный период времени.

    Метод бетонирования зимой

    Методов заливания бетона существует несколько. Виды его зависят от погодных условий, а также от типа конструкции, что возводится. Среди самых распространенных:

    1. Термос, также может быть добавлением противоморозных компонентов.
    2. Обогревающая опалубка.
    3. Подогрев при помощи электродов.
    4. ИК или индукционный прогрев.
    5. Прогревание проводами.

    Чтобы отчетливее иметь представление о прогреве бетонной смеси, рассмотрим наиболее актуальные методы отдельно.

    Электропрогревание бетона зимой

    Самым распространенным методом, который сберегает тепло искусственным методом, является прогревание раствора при помощи электродов. Метод основывается на пропускании электрического тока сквозь бетонный раствор, за счет чего выделяется тепло. Чтобы подвести ток к бетонной смеси, впору использовать различные типы электродов, которые имеют индивидуальную схему подключения. Из-за того, что постоянный ток провоцирует электролиз воды в растворе, в период прогревания может применяться однофазный и трехфазный переменный ток.

    Типы электродов, которые используются для прогревания:

    1. Стержневой электрод. Делается он из арматуры и размещается в бетонном растворе с расчетным шагом. Край необходимо располагать в 3-х сантиметрах от опалубки. С помощью таких электродов можно прогреть самую сложную конструкцию.
    2. Пластинчатый электрод. Такие пластины крепятся на внутреннюю сторону опалубки и за счет подключения противоположных друг другу электродов, создается электрополе, под воздействием которого бетонная смесь будет подогреваться до нужной температуры и держаться требуемое время.
    3. Струнный электрод. Данный тип обычно применяют при прогревании бетонных колонн.
    4. Полосовой электрод. Такие полосы можно крепить к требуемым сторонам конструкции.

    Следующий довольно распространенный метод прогревания – это нагревательный провод. Эта технология на сегодняшний день наиболее применяема крупными строительными фирмами, как отечественными, так и зарубежными. Заметим, что довольно многие объекты в Москве при строительстве прогревались с помощью именно этого метода.

    Данный метод заключается в креплении нагревательного провода, требуемой длины к арматурному каркасу до укладки массы в опалубку. Этот способ подразумевает использование провода ПНСВ, его стержень стальной оцинкованный, диаметр которого 1,2 мм. Выделяемое тепло от такого провода, при прохождении по нему электричества, распределяется равномерно по бетонной смеси, и позволяет прогревать ее до 40 градусов. Провода питаются электричеством при помощи специальных подстанций, которые имеют несколько ступеней пониженного напряжения. Одна подобная подстанция способна подогревать до 3 кубических метров бетона. Для того чтобы прогревать 1 кубический метр бетона, требуется около 60 метров провода. Данный метод позволяет прогревать бетонные конструкции любой сложности при температуре до -30 градусов.

    На сегодняшний день большие строительные компании используют одновременно несколько типов подогрева. Необходимость такого комбинирования зависит от многих факторов, главными среди которых считают:

    • размер строительного объекта;
    • требуемая прочность бетона;
    • погодные условия;
    • наличие энергоресурса на стройплощадках.

    Способ прогревания опалубки подразумевает ее конструирование с элементами нагрева, которые закладываются в нее изначально. Данный метод схож с методом прогрева пластинами, только прогревание идет не от внутренней стороны опалубки, а от ее внутрянки или наружной стороны.

    Используется данный метод в зимнее время не очень часто из-за его сложности. Заливая фундамент, опалубка не может соприкасаться со всей бетонной конструкцией, поэтому идет подогрев только части бетонной массы.

    Индукционный метод используют крайне редко. Обычно его применяют в балках, прогонах, ригелях. Принцип данного метода в том, что вокруг металлической арматуры обматывается изолированный провод, который создает индукцию и разогревает сам металлический стержень.

    Электропрогревание бетонного сооружения используется в зимний период за счет того, что ИК-лучи способны прогревать всю поверхность непрозрачного объекта и распространять тепло по всей площади. Выбирая данный метод, следует учитывать, что конструкцию нужно окутать полиэтиленовой пленкой для того, чтобы лучи проходили сквозь нее, а тепло не выходило слишком быстро. Преимущество такого метода в том, что он не требует наличия специальных подстанций, а недостатком является неравномерное прогревание бетонного строения. Этот способ наиболее подходящий для прогревания тонкой конструкции.

    Начиная строительство того или иного объекта, позаботьтесь о том, чтобы были соблюдены все правила, рекомендации и учтены все нюансы, в противном случае можно получить не только некачественный результат, но и делать через год капитальный ремонт всего бетонного сооружения.

    Бетон будет прочен только в том случае, если он положен правильной методикой и выстоялся согласно нормам.

    Нет статей по теме.

    Методическая документация в строительстве

    ЗАО «ЦНИИОМТП»

    ЗИМНЕЕ БЕТОНИРОВАНИЕ
    С ПРИМЕНЕНИЕМ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ

    МДС 12-48.2009

    Москва 2009

    В настоящем методическом документе содержатся сведения о зимнем бетонировании с применением нагревательных проводов: технические требования к нагревательным проводам и силовому электрооборудованию, методические положения по расчету и выбору параметров режима термообработки бетона, рекомендации по организации работ, правила и приемы выполнения технологических операций, нормы и процедуры оценки качества работ. Приводятся примеры бетонирования типовых конструктивных элементов здания: колонн, стен и перекрытий.

    Сведения, содержащиеся в документе, могут быть использованы для составления технологических документов на зимнее бетонирование: проектов производства работ, технологических карт, технических регламентов и т.п.

    Методический документ предназначен для проектных и строительных организаций и специалистов-строителей, занимающихся вопросами производства бетонных работ в зимних условиях.

    Методический документ разработан сотрудниками ЗАО «ЦНИИОМТП» - кандидатами техн. наук В.П. Володиным и Ю.А. Корытовым.

    ВВЕДЕНИЕ

    К зимнему бетонированию относятся работы, выполняемые при среднесуточной температуре наружного воздуха ниже 5°С и минимальной суточной температуре ниже 0°С. Считается, что зимнее бетонирование может производиться при температуре воздуха до минус 40°С. На практике зимнее бетонирование освоено до температуры минус 15-20°С.

    Для набора бетоном необходимой прочности выполняют специальные мероприятия по подготовке и производству бетонных работ в зимнее время.

    Для зимнего бетонирования применяют специальные бетоны с химическими противоморозными и пластифицирующими добавками.

    При выполнении работ прогревают свежеуложенный бетон различными способами с применением водяного пара, нагретой воды или электроэнергии.

    Свежеуложенный бетон предохраняют от потерь теплоты (метод термоса), укрывая различными утеплителями (матами, покрывалами, полотнищами).

    Особые мероприятия, в частности по утеплению рабочих органов и бетоноводов, осуществляют при подготовке машин и технологического оборудования к зимнему бетонированию.

    Основное требование при выполнении зимнего бетонирования заключается в создании благоприятных условий для приобретения бетоном в короткий срок необходимой проектной прочности.

    Массивные монолитные конструкции (фундаментные плиты и блоки) с модулем поверхности охлаждения М п от 2 до 4 бетонируют способом термоса с применением быстротвердеющих цементов, ускорителей твердения и противоморозных и пластифицирующих добавок.

    Конструкции (колонны, блоки, стены) с модулем поверхности охлаждения 4-6 бетонируют способом термоса с применением предварительного подогрева бетонной смеси, нагревательных проводов и греющей опалубки.

    Относительно тонкостенные конструкции (перегородки, перекрытия, стены) с модулем поверхности охлаждения 6-12 бетонируют упомянутыми выше способами с применением нагревательных проводов, термоактивных гибких покрытий (ТАГП), греющих плоских элементов (ГЭП).

    В данном документе рассматривается способ зимнего бетонирования с применением нагревательных проводов. Этот способ имеет ряд преимуществ по сравнению с нагревом водяным паром, горячей водой, инфракрасным облучением. Эффективность способа повышается в сочетании с другими упомянутыми выше мероприятиями и приемами зимнего бетонирования: использованием высококлассного бетона с химическими добавками, утеплителей, подготовкой машин и технологического оборудования.

    Применение нагревательных проводов позволяет возводить здания и сооружения, не отличающиеся по своей прочности от возводимых в летний период.

    Настоящий документ содержит методические рекомендации и примеры, которые позволяют подбирать способы работ (режимы, приемы) и материалы для зимнего бетонирования для конкретного объекта строительства, с учетом местных условий и особенностей строительной организации. Выбор способа работ и материалов производится на стадии разработки проекта производства работ (технологических карт), согласовывается с заказчиком и утверждается в установленном порядке.

    Настоящий документ необходим не только для разработки упомянутой выше технологической документации, но может быть полезен при лицензировании строительной организации (фирмы) на производство данного вида работ, при сертификации системы управления качеством, при аттестации качества зимнего бетонирования,

    В основу документа положены научно-исследовательские работы, выполненные в ЦНИИОМТП и в других институтах строительной отрасли, а также обобщение опыта зимнего бетонирования российских строительных организаций.

    При разработке документа использованы нормативные и методические документы, основные из которых приведены в разделе 2.

    1 ОБЛАСТЬ ПРИМЕНЕНИЯ

    Документ распространяется на зимнее бетонирование с применением нагревательных проводов монолитных железобетонных строительных конструкций (плит, стен, перекрытий, колонн и т.п.), имеющих модуль поверхности охлаждения 4-10, при строительстве и ремонте жилых, общественных и производственных зданий и сооружений.

    Зимнее бетонирование с применением нагревательных проводов производится при температуре окружающего воздуха, как правило, до минус 20°С.

    Документ используется для разработки проектов производства работ (технологических карт), при сертификации монолитных железобетонных конструкций и лицензировании организаций, выполняющих зимнее бетонирование.

    Применение документа способствует обеспечению проектной прочности монолитных железобетонных конструкций, возводимых в зимних условиях.

    2 НОРМАТИВНЫЕ И МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

    Теплоизоляционные материалы

    Коэффициент теплопередачи К , Вт/( м 2 ·°С), при скорости ветра, м/с

    Пенопласт (ПХВ) толщиной 120 мм

    Опилки сосновные толщиной 100 мм

    Плиты минераловатные толщиной, мм:

    Шлак толщиной слоя 150 мм

    Доски деревянные толщиной, мм:

    4.3.2 В качестве утеплителя для открытых бетонных поверхностей кроме приведенных в таблице 5 применяют также керамзит, перлит, совелитовые плиты, торфоплиты, камышит и другие теплоизоляционные материалы.

    Для утепления щитов опалубки может быть применена заливная теплоизоляция на основе, например, пенополиуретана и фенопласта.

    Эти же теплоизоляционные материалы используют для укрытия металлического каркаса опалубки и ребер, которые являются, как известно, «мостиками холода».

    4.4 Автобетононасос и бетоновод

    4.4.1 Подготовка рабочих органов автобетононасоса (бункера, других узлов) и бетоновода заключается, прежде всего, в утеплении их теплоизоляционными материалами. Утепление должно быть таким, чтобы потери теплоты бетонной смеси при загрузке ее в бункер, транспортировании и укладке в опалубку были минимальными и обеспечивали заданную проектом температуру смеси при укладке.

    Бункер автобетононасоса регулярно очищают и защищают от снега и ветра.

    В ряде случаев (например, при температуре наружного воздуха до минус 5°С, при бетонировании второстепенных конструкций) автобетононасос может использоваться без зимней подготовки, то есть в летнем исполнении.

    4.4.2 Подготовка к зиме других органов, узлов и агрегатов автобетононасоса выполняется во время сезонного технического обслуживания, в состав которого входят регламентные операции по замене масел и рабочих жидкостей, регулировочные и другие операции по обеспечению бесперебойной работы автобетононасоса зимой.

    4.4.3 Перед началом работы автобетононасоса (транспортирования и укладки бетонной смеси) бетоновод прогревают теплым воздухом, паром или горячей водой.

    Очистку бункера автобетононасоса и бетоновода после работы производят теплой водой. Воду, оставшуюся после очистки, полностью удаляют.

    4.4.4 В начальный момент работы автобетононасоса температура пускового раствора и бетонной смеси, заполнившей бетоновод, должна быть не ниже 30°С.

    Температура бетонной смеси в процессе укладки должна соответствовать температуре, заданной проектом.

    При утепленном бетоноводе допускается непреднамеренная остановка автобетононасоса до 30 минут. При более длительной остановке необходимо удалить бетонную смесь из бетоновода.

    5 ТЕХНОЛОГИЯ ТЕРМООБРАБОТКИ БЕТОНА

    5.1 До начала работ по укладке нагревательных проводов должны быть закончены, как правило, опалубочные и арматурные работы. В ряде случаев укладку нагревательных проводов целесообразно производить одновременно с арматурными и опалубочными работами.

    В составе зимнего бетонирования выполняют следующие подготовительные и основные работы.

    Выполняют подготовительные работы по организации рабочего места и оснащению его средствами труда и технологическим оборудованием, по созданию безопасных условий труда. Устраивают ограждение рабочего места, проводят сигнализацию и освещение. Устанавливают на ровной твердой площадке силовое оборудование и вдоль захватки - секции электроразводки. Подключают нагревательные провода к секциям электроразводки, а секции - к трансформатору.

    Основные работы зимнего бетонирования (термообработка бетона) производятся после завершения бетоноукладочных работ. Открытые поверхности бетона укрывают гидроизоляционной пленкой, теплоизоляционным материалом и подают напряжение на нагревательные провода.

    Скорость остывания бетона обычно принимают 2,0-3,0°С/ч.

    5.3 Для обеспечения при данной температуре наружного воздуха и скорости ветра заданного режима термообработки железобетонной конструкции, характеризуемой модулем поверхности, классом бетона с известным расходом цемента, температурой уложенного в опалубку бетона, по параметрам имеющихся опалубки и утеплителя, проводов и силового оборудования определяют электрические параметры нагрева бетона: коэффициент теплопередачи, удельную мощность нагрева бетонной конструкции, линейную электрическую нагрузку, шаг и длину проводов.

    5.4 Коэффициент теплопередачи K определяют по (в том числе с помощью линейной интерполяции или экстраполяции) или по формуле

    где

    α λ = 2,1 - 3,2 Вт/(м 2 ·°С) - коэффициент передачи теплоты от опалубки излучением;

    δ i = 0,015 - 0,1 м - толщина слоя теплоизоляционного материала;

    λ i = 0,02 - 0,8 Вт/(м 2 ·°С) - коэффициент теплопроводности теплоизоляционного материала;

    α к = 20,0 - 43,0 Вт/(м 2 ·°С) - коэффициент передачи теплоты конвекцией:

    при скорости ветра до 5 м/с α к = 20,0 Вт/ /(м 2 ·°С),

    при 10 м/с α к = 30,0 Вт/(м 2 ·°С),

    при 15 м/с α к = 43,0 Вт/(м 2 ·°С).

    Примеры расчета К приведены в .

    5.5 Удельная мощность нагрева бетонной конструкции Р уд определяется отношением общей мощности Р нагрева к нагреваемой площади бетонной конструкции. Определяется удельная мощность, необходимая для нагрева бетона до заданной температуры. Удельная мощность зависит от разности температуры нагревания бетона и наружного воздуха ∆Т , °С, массивности нагреваемой конструкции, характеризуемой модулем охлаждаемой поверхности М п, от коэффициента теплопередачи K и содержания цемента в бетонной смеси Ц .

    Теоретически разность температуры нагревания бетона и наружного воздуха ∆Т , °С, может составлять от минус 40 до плюс 80, то есть 120°С; практически она составляет от минус 20 до плюс 50, то есть 70°С. Модуль охлаждаемой поверхности имеет практическое значение в диапазоне от 4 до 10 м -1 ; в этом диапазоне находятся типовые фундаментные плиты, колонны, полы, стены и перекрытия. Коэффициент теплопередачи в зависимости от вида применяемых теплоизоляционных материалов, а также толщины и конструкций утеплителей, скорости ветра изменяется в широких пределах: от 0,2 до 6,0 Вт/(м 2 ·°С); для утепленных щитов опалубки он не превышает 3,0 Вт/(м 2 ·°С). Так как твердение бетона - процесс экзотермический, то чем больше цемента, тем меньше требуется электрическая мощность для нагрева бетона. Так, при увеличении содержания цемента в зимней бетонной смеси в два раза (с 200 до 400 кг/м 3) потребная удельная мощность нагревания сокращается при прочих равных условиях с 960 до 600 Вт/м 2 , то есть на 37 %. Зависимость удельной мощности нагрева бетона от рассмотренных параметров была установлена экспериментально и представлена в виде номограммы (рис. 1).

    5.6 с диаметром стальной токонесущей жилы 0,6- 3,0 мм уточняется экспериментально из интервала: для армированных конструкций 30-35 Вт/м, для неармированных 35-40 Вт/м. При линейной электрической нагрузке более 40 Вт/м температура провода превышает 100°С, что приводит к структурным нарушениям в бетоне и уменьшению его прочности. Кроме того, может быть нарушена электроизоляция провода и может произойти короткое замыкание на арматуру и закладные детали.

    5.7 Шаг и длина проводов должны создать такую плотность их укладки, которая обеспечивает необходимую равномерность нагрева бетона в конструкции.

    Шаг проводов b определяют по формуле

    Длина проводов в зависимости от линейной электрической нагрузки, диаметра проводов (токонесущей жилы) и рабочего напряжения может быть ориентировочно определена по номограмме рис. 2 и уточнена по форме и размерам конструкции.

    Шаг проводов выбирается из интервала 50- 150 мм. Для конструкций, контактирующих с грунтом, шаг может быть принят 150- 200 мм. В стыках элементов, в подливках под колонны и оборудование, в местных заделках шаг проводов сокращают до 25- 70 мм.

    Длина проводов должна быть кратной высоте стен, колонн, фундаментов и ширине перекрытий.

    Примеры определения шага и длины проводов приведены в .

    Между прямыми 2 и 4 коэффициента теплопередачи K , Вт/(м 2 ·°С), проводим визуально прямую, равную 3,6 Вт/(м 2 ·°С).

    T = 60°С с ординатой М п = 8,0 м -1 модуля поверхности колонны. Из этой точки проводим горизонталь до пересечения с упомянутой прямой, равной K = 3,6 Вт/(м 2 ·°С).

    Ц = 350 кг/м 3 .

    Проекция полученной точки на ординату удельной мощности нагрева провода указывает Р уд = 320 Вт/м 2 .

    Шаг нагревательных проводов ( b ) определяем по

    b = 1/(Р уд /р +1) = 1/(320/33 + 1) = 0,09 = 0,1 м,

    где р = 33 Вт/м - удельная нагрузка на провод из рекомендуемого интервала р = 30-35 Вт/м для армированных конструкций.

    Длина провода L , необходимого для навивки по схеме , г на арматурный каркас с шагом 10 см, составляет

    L = 2(А + Б )С / b = 2(0,5 + 0,5)7,5/0,1 = 150 м.

    d d = 1,2 мм.

    р = 33 Вт/м проводим ординату до точки пересечения с кривой, затем из этой точки по горизонтали находим точку пересечения с кривой d U , В. Проекции точек пересечения на ординату длины нагревателя позволяют подобрать длину нагревателя l , м. Наиболее близким значением является длина нагревателя 25 м при рабочем напряжении U = 55 В. Таким образом, на поверхностях охлаждения колонны укладывается 6 нагревателей по 25 м каждый.

    Удельный расход провода (на 1 м 3 бетона) составит 150,0/1,87 ≈ 80,0 м.

    Режим термообработки бетона определим с учетом рекомендаций и при условии, что прочность бетона составит не менее 70 % R 28 . Продолжительность нагрева при скорости нагрева 4,0°С/ч составляет не менее 6 ч, изотермическая выдержка при +40°С по графику (см. ) - 60 ч и остывания до нуля при скорости остывания 2,0°С/ч - не менее 20 ч.

    Аналогичные расчеты были выполнены при температуре воздуха -10 и -15°С.

    Основные параметры термообработки бетона в колонне сведены в следующую таблицу 6.

    Таблица 6

    Температура воздуха, °С

    Удельная мощность нагрева Р уд , Вт/м 2

    Шаг нагревателя b , мм

    Диаметр провода d , мм

    Длина нагревателя, м

    Напряжение тока U , В

    6.2 Стена

    Бетонирование (бетон класса В15, расход цемента 350 кг/м 3) стены с размерами А ´ В ´ С (3000 ´ 500 ´ 6000 мм) производится в инвентарной стальной опалубке с размерами щита 2000 ´ 1000 мм, утепленной минераловатными плитами толщиной 60 мм. Для термообработки бетона предусмотрены нагревательный провод ПНСВ 1 ´ 1,4 и трансформаторная подстанция типа КТПТО-80-86 VI

    Температура бетонной смеси, уложенной в опалубку, +5°С;

    Средняя температура наружного воздуха в течение суток -15°С;

    Скорость ветра 3 м/с;

    Температура изотермического выдерживания бетона +45°С.

    Принимается, что потери теплоты через верхнюю и нижнюю поверхности стены незначительны (верхняя открытая поверхность надежно укрыта теплоизоляционным материалом) и поэтому не учитываются.

    Модуль поверхности охлаждения стены М п равен

    М п = F / V = 39,0/9,0 = 4,3 м -1 .

    Коэффициент теплопередачи К опалубки определим по формуле (1)

    K = 1/(1/ α λ + å δ i / λ i + 1/ α к ) = 1/(1/2,8 + 0,06/0,6 + 1/25) = 2,0 Вт/(м 2 ·°С),

    где

    α λ

    δ i = 0,06 м - толщина слоя теплоизоляционного материала;

    λ i = 0,6 Вт/(м 2 ·°С) - коэффициент теплопроводности теплоизоляционного материала;

    α к = 25,0 Вт/(м 2 ·°С) - коэффициент передачи теплоты конвекцией при скорости ветра 3 м/с.

    Находим разницу температуры нагретого бетона и наружного воздуха T , которая составляет

    T = 45 - (-15) = 60°С.

    Р уд определяем по номограмме рис. 1.

    Находим точку пересечения прямой T = 60°С с ординатой М п = 4,3 м -1 модуля поверхности стены. Из этой точки проводим горизонталь до пересечения с прямой коэффициента теплопередачи, равной K = 2,0 Вт/(м 2 ·°С).

    Опускаем перпендикуляр из этой точки на прямую расхода цемента Ц = 350 кг/м 3 .

    Р уд = 250 Вт/м 2 .

    Шаг нагревательных проводов b определяем по формуле (2)

    b = 1/(Р уд /р + 1) = 1/(250/34 + 1) = 0,12 м,

    где d = 1,1-1,4 из рекомендуемого интервала р = 30-35 Вт/м для армированных конструкций.

    Длина провода L , необходимая для навивки по схеме рис. 3, в на арматурный каркас с шагом 12 см, составляет

    L = 2А (С + В )/ b = 2·3(6 + 0,5)/0,12 ≈ 324 м.

    Из точки на абсциссе удельной нагрузки р d = 1,4 мм. Опускаем перпендикуляр из этой точки на кривые рабочего напряжения U , В. Проекции точек пересечения на ординату длины нагревателя позволяют подобрать длину нагревателя. Наиболее близким значением является длина нагревателя 27 м при рабочем напряжении U = 58 В. Таким образом, на поверхностях охлаждения стены укладывается 12 нагревателей по 27 м каждый.

    Удельный расход провода (на 1 м 3 бетона) составит 324,0/9,0 = 36,0 м.

    Режим термообработки бетона определим с учетом рекомендаций раздела 5.2 и при условии, что прочность бетона составит не менее 70 % R 28 . Продолжительность нагрева при скорости нагрева 4,0°С/ч составляет не менее 10 ч, изотермическая выдержка при +45°С по графику рис. 7 - 48 ч и остывания до нуля при скорости остывания 2,0°С/ч - не менее 22 ч.

    Аналогичные расчеты были выполнены при температуре воздуха -10 и -20°С.

    Таблица 7

    Температура возду ха, °С

    Удельная мощность нагрева Р уд , Вт/м 2

    Шаг нагревателя b , мм

    Диаметр провода d , мм

    Длина нагревателя, м

    Напряжение тока U , в

    Основные параметры термообработки бетона в стене сведены в следующую таблицу 7.

    6.3 Перекрытие

    Бетонирование (бетон класса В25, расход цемента 400 кг/м 3) перекрытия с размерами А ´ В ´ С (6000 ´ 6000 ´ 200 мм) производится в опалубке из ламинированной фанеры толщиной 21 мм. Открытая поверхность перекрытия утепляется минераловатными плитами толщиной 80 мм, термоактивными гибкими покрытиями (ТАГП) или греющими плоскими элементами (ГЭП).

    Для термообработки бетона предусмотрены нагревательный провод ПНСВ 1 ´ 1,2 и трансформаторная подстанция типа КТПТО-80-86.

    Условия бетонирования следующие:

    Температура бетонной смеси, уложенной в опалубку, +10°С;

    Температура изотермического выдерживания бетона +45°С;

    Температура наружного воздуха: днем -16°С, ночью -20°С;

    Скорость ветра 1,5 м/с.

    Определение параметров режима термообработки бетона производится в следующей последовательности.

    Принимается, что потери теплоты через открытую верхнюю поверхность перекрытия незначительны (надежно укрыта теплоизоляционным материалом) и поэтому не учитываются.

    Модуль поверхности охлаждения перекрытия М п при этом равен

    М п = F / V = 40,8/7,2 ≈ 6,0 м -1 .

    Коэффициент теплопередачи K опалубки из ламинированной фанеры определим по формуле (1)

    K = 1/(1/ α λ + å δ i / λ i + 1/ α к ) = 1/(1/2,8 + 0,021/0,4 + 1/20) = 2,2 Вт/(м 2 ·°С),

    где

    α λ = 2,8 Вт/(м 2 ·°С) - коэффициент передачи теплоты от опалубки излучением;

    δ i = 0,021 м - толщина ламинированной фанеры;

    λ i = 0,4 Вт/(м 2 ·°С) - коэффициент теплопроводности ламинированной фанеры;

    α к = 20,0 Вт/(м 2 ·°С) - коэффициент передачи теплоты конвекцией при скорости ветра 1,5 м/с.

    Находим разницу температуры T нагретого бетона и средней температуры наружного воздуха в течение суток (равна -18°С), которая составляет

    T = 45 - (-18) = 63°С.

    Необходимую удельную мощность нагрева бетона Р уд определяем по номограмме .

    Находим точку пересечения прямой T = 63°С с ординатой М п = 6,0 м -1 модуля поверхности перекрытия. Из этой точки проводим горизонталь до пересечения с прямой коэффициента теплопередачи, равной K = 2,2 Вт/ (м 2 ·°С).

    Опускаем перпендикуляр из этой точки на прямую расхода цемента Ц = 400 кг/м 3 .

    Проекция полученной точки на ординату удельной мощности нагрева указывает Р уд = 300 Вт/м 2 .

    Шаг нагревательных проводов b определяем по

    b = 1/( P уд /р + 1 = 1/(300/34 + 1) = 0,10 м,

    где d = 1,1-1,4 из рекомендуемого интервала р = 30-35 Вт/м для армированных конструкций.

    Длина провода L , необходимого для укладки в нижнем уровне арматуры по схеме , б с шагом 10 см, составляет

    L = B (A /b + 1) + А = 6(6/0,1 + 1) + 6 ≈ 372 м .

    Между кривыми 1,4 и 1,1 мм диаметра провода d проводим визуально кривую, равную d = 1,2 мм.

    Из точки на абсциссе удельной нагрузки р = 34 Вт/м проводим ординату до точки пересечения с кривой, затем из этой точки по горизонтали находим точку пересечения с кривой d = 1,2 мм. Опускаем перпендикуляр из этой точки на кривые рабочего напряжения U , В . Проекции точек пересечения на ординату длины нагревателя позволяют подобрать длину нагревателя. Наиболее близким значением является длина нагревателя 25 м при рабочем напряжении U = 55 В. Таким образом, в перекрытие укладывается 15 нагревателей по 25 м каждый.

    Удельный расход провода (на 1 м 3 бетона) составит 372,0/7,2 ≈ 52,0 м.

    Режим термообработки бетона определим с учетом рекомендаций и при условии, что прочность бетона составит не менее 70 % R 28 . Продолжительность нагрева при скорости нагрева 4,0°С/ч составляет не менее 9 ч, изотермическая выдержка при +45°С по графику - 48 ч и остывания до нуля при скорости остывания 2,0°С/ч - не менее 22 ч.

    Аналогичные расчеты были выполнены при температуре воздуха -10°С.

    Основные параметры термообработки бетона в перекрытии сведены в следующую таблицу 8.

    Таблица 8

    Температура воздуха, °С

    Удельная мощность нагрева Р уд , Вт/м 2

    Шаг нагревателя b , мм

    Диаметр провода d , мм

    Длина нагревателя, м

    Напряжение тока U , В

    Качество зимнего бетонирования должно обеспечить проектную прочность монолитных бетонных и железобетонных конструкций. Общие требования к контролю качества бетона изложены в СНиП 12-01-2004 и СНиП 3.03.01-87 .

    Качество зимнего бетонирования зависит от выполнения подготовительных работ, выбранного режима термообработки и контроля качества работ.

    До начала основных работ следует проверить работоспособность оборудования и системы автоматики, отсутствие повреждений проводов, надежность изоляции.

    Режим термообработки необходимо проверить и при необходимости откорректировать по результатам лабораторных испытаний образцов бетона.

    Перед укладкой проводов и бетонированием проверяют качество очистки от снега и льда основания, арматуры и опалубки.

    В первые часы нагревания бетона и не реже двух раз в сутки измеряют ток и напряжение в питающей сети. Наблюдение за работой оборудования, осмотр проводов, кабелей и мест электрических соединений с целью выявления повреждений, искрения и т.п. производятся постоянно. Сопротивление изоляции нагревателей должно составлять не менее 1,0 МОм в холодном и 0,5 МОм в горячем состоянии.

    После бетонирования проверяют соответствие согласно проекту и надежность укрытия открытых поверхностей бетона гидроизоляционными и теплоизоляционными материалами.

    В процессе нагрева температуру бетона измеряют не реже чем через каждые два часа. Не реже двух раз в смену снимают показания датчиков температуры для построения графиков температуры нагревания, выдерживания и остывания бетона.

    Контроль набора прочности бетона осуществляется по температурному режиму наиболее ответственных или менее нагретых участков конструкции. . Безопасность труда в строительстве. Часть 2. Строительное производство; и ГОСТ 12.4.059-89 .

    Бетонные работы с электрообогревом должны производиться, как правило, в светлое время суток. Строительная площадка, участок работ, рабочее место в темное время суток должны быть освещены в соответствии с требованиями ГОСТ 12.1.046-85 «ССБТ. Строительство. Нормы освещения строительных площадок».

    При подаче и уплотнении бетонной смеси опалубку и поддерживающие конструкции следует тщательно осматривать, проверять на надежность установку стоек, подкосов.

    При уплотнении бетонной смеси электровибраторами перемещать вибратор за токоведущие шланги не допускается, а при перерывах в работе и при переходе с одного места на другое электровибраторы необходимо выключать.

    Эксплуатация автобетононасоса и автобетоносмесителя должна осуществляться в соответствии с указаниями заводов-изготовителей, изложенными в инструкциях по эксплуатации.

    Соединять стальные трубы бетоновода с резинотканевыми шлангами необходимо с помощью инвентарных хомутов на болтах.

    Необходимо следить, чтобы шланги с движущейся бетонной смесью не имели перегибов.

    Перед промывкой бетоновода посторонние лица (рабочие, не участвующие в данной работе) должны быть удалены на расстояние не менее чем на 10 м.

    Под стрелой автобетононасоса любые работы запрещены.

    Зона работы автобетононасоса должна иметь ограждение, перед зоной работы должны быть вывешены предупредительные знаки, отвечающие требованиям ГОСТ Р 12.4.026-2001 .

    Ниже приведены основные правила техники безопасности при производстве электронагрева бетона.

    Рабочие по электронагреву бетона должны быть снабжены резиновыми сапогами (диэлектрическими галошами) и резиновыми перчатками.

    Подключение к сети нагревательных проводов производится после отключения напряжения.

    В местах ограждения следует повесить красные лампочки, загорающиеся при подаче напряжения на провода.

    Арматуру в опалубке, закладные детали, а также металлические нетоковедущие части оборудования заземляют, присоединяя к ним нулевой провод питающего кабеля. При использовании контура заземления перед включением напряжения следует измерить сопротивление контура, которое должно быть не более 4 Ом.

    Около трансформатора, распределительных щитов и рубильников укладывают деревянные настилы, покрытые диэлектрическими коврами.

    Не следует подавать рабочее напряжение на нагревательные провода, если они находятся не в бетоне, а на воздухе, если имеют механические повреждения или ненадежно соединены с кабелями.

    Допускаются при соблюдении изложенных выше правил укладка и уплотнение бетона при неотключенных проводах, если рабочее напряжение не превышает 60 В и в зоне действия глубинного вибратора нет проводов, которые можно было бы повредить.

    Не следует подключать проволочные нагреватели к сети напряжением выше 220 В.

    Электротехнические работы при зимнем бетонировании выполняются специально обученными рабочими-электриками, проводятся под руководством и наблюдением инженерно-технического работника, назначенного приказом по организации.

    Статьи по теме: