Автоматизированный центральный тепловой пункт принцип работы. Тепловые пункты: устройство, работа, схема, оборудование

Тепловой пункт (ТП) - это комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Тепловой пункт и присоединённое здание

Назначение

Основными задачами ТП являются:

  • Преобразование вида теплоносителя
  • Контроль и регулирование параметров теплоносителя
  • Распределение теплоносителя по системам теплопотребления
  • Отключение систем теплопотребления
  • Защита систем теплопотребления от аварийного повышения параметров теплоносителя
  • Учет расходов теплоносителя и тепла

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых, определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП. Различают следующие виды ТП :

  • Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • Блочный тепловой пункт (БТП). Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Источники тепла и системы транспорта тепловой энергии

Источником тепла для ТП служат теплогенерирующие предприятия (котельные , теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей. Тепловые сети подразделяются на первичные магистральные теплосети , соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети, соединяющие ТП с конечными потребителями. Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом .

Магистральные тепловые сети, как правило, имеют большую протяженность (удаление от источника тепла до 10 км и более). Для строительства магистральных сетей используют стальные трубопроводы диаметром до 1400 мм. В условиях, когда имеется несколько теплогенерирующих предприятий, на магистральных теплопроводах делаются закольцовки, объединяющие их в одну сеть. Это позволяет увеличить надёжность снабжения тепловых пунктов, а, в конечном счёте, потребителей теплом. Например, в городах, в случае аварии на магистрали или местной котельной, теплоснабжение может взять на себя котельная соседнего района. Также, в некоторых случаях, общая сеть даёт возможность распределять нагрузку между теплогенерирующими предприятиями. В качестве теплоносителя в магистральных теплосетях используется специально подготовленная вода . При подготовке в ней нормируются показатели карбонатной жёсткости, содержания кислорода, содержания железа и показатель pH. Неподготовленная для использования в тепловых сетях (в том числе водопроводная, питьевая) вода непригодна для использования в качестве теплоносителя, так как при высоких температурах, вследствие образования отложений и коррозии, будет вызывать повышенный износ трубопроводов и оборудования. Конструкция ТП предотвращает попадание относительно жёсткой водопроводной воды в магистральные теплосети.

Вторичные тепловые сети имеют сравнительно небольшую протяженность (удаление ТП от потребителя до 500 метров) и в городских условиях ограничиваются одним или парой кварталов. Диаметры трубопроводов вторичных сетей, как правило, находятся в пределах от 50 до 150 мм. При строительстве вторичных тепловых сетей могут использоваться как стальные, так и полимерные трубопроводы. Использование полимерных трубопроводов наиболее предпочтительно, особенно для систем горячего водоснабжения, так как жёсткая водопроводная вода в сочетании с повышенной температурой приводит к интенсивной коррозии и преждевременному выходу из строя стальных трубопроводов. В случае с индивидуальным тепловым пунктом, вторичные тепловые сети могут отсутствовать.

Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети .

Системы потребления тепловой энергии

В типичном ТП имеются следующие системы снабжения потребителей тепловой энергией:

Принципиальная схема теплового пункта

Схема ТП зависит с одной стороны от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях, на котельных и ТЭЦ существуют системы подпитки , источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего, часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру, вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Правильность функционирования обору­дования теплового пункта определяет эконо­мичность использования и подаваемой потре­бителю теплоты, и самого теплоносителя. Тепловой пункт является юридической грани­цей, что предполагает необходимость его оборудования набором контрольно-измерительных приборов, позволяющих определить взаимную ответственность сторон. Схемы и оборудование тепловых пунктов необходимо определять в соответствии не только с тех­ническими характеристиками местных систем теплопотребления, но и обязательно с харак­теристиками внешней тепловой сети, режимом работы ее и теплоисточника.

В разделе 2 рассмотрены схемы присоеди­нения всех трех основных видов местных систем. Рассматривались они раздельно, т. е. считалось, что они присоединены как бы к общему коллектору, давление теплоносите­ля в котором постоянно и не зависит от расхода. Суммарный расход теплоносителя в коллекторе в этом случае равен сумме расходов в ветвях.

Однако тепловые пункты присоединяют­ся не к коллектору теплоисточника, а к тепловой сети, и в этом случае изменение расхода теплоносителя в одной из систем неизбежно отразится на расходе теплоноси­теля в другой.

Рис.4.35. Графики расхода теплоносителя:

а - при подключении потребителей непосредст­венно к коллектору теплоисточника; б - при под­ключении потребителей к тепловой сети

На рис. 4.35 графически показано изме­нение расходов теплоносителя в обоих слу­чаях: на схеме рис. 4.35, а системы отопле­ния и горячего водоснабжения присоеди­нены к коллекторам теплоисточника раздель­но, на схеме рис. 4.35,б те же системы (и с тем же расчетным расходом тепло­носителя) присоединены к наружной тепловой сети, имеющей значительные потери давления. Если в первом случае суммарный расход теплоносителя растет синхронно с расходом на горячее водоснабжение (режимы I , II, III ), то во втором, хотя и имеет место рост расхода теплоносителя, одновременно авто­матически снижается расход на отопление, в результате чего суммарный расход тепло­носителя (в данном примере) составляет при применении схемы рис. 4.35,б 80% расхода при применении схемы рис. 4.35,а. Степень сокращения расхода воды определяет соотно­шение располагаемых напоров: чем больше соотношение, тем больше снижение суммар­ного расхода.

Магистральные тепловые сети рассчиты­ваются на среднесуточную тепловую нагруз­ку, что существенно снижает их диаметры, а следовательно, затраты средств и металла. При применении в сетях повышенных гра­фиков температур воды возможно и дальней­шее снижение расчетного расхода воды в теп­ловой сети и расчет ее диаметров только на нагрузку отопления и приточной венти­ляции.

Максимум горячего водоснабжения мо­жет быть покрыт с помощью аккумулято­ров горячей воды либо путем использо­вания аккумулирующей способности отапливаемых зданий. Поскольку применение акку­муляторов неизбежно вызывает дополнитель­ные капитальные и эксплуатационные затра­ты, то их применение пока ограничено. Тем не менее в ряде случаев применение крупных аккумуляторов в сетях и при групповых тепловых пунктах (ГТП) может быть эффективно.

При использовании аккумулирующей способности отапливаемых зданий имеют место колебания температуры воздуха в по­мещениях (квартирах). Необходимо, чтобы эти колебания не превышали допустимого предела, в качестве которого можно, напри­мер, принять +0,5°С. Температурный режим помещений определяется рядом факторов и поэтому трудно поддается расчету. Наиболее надежным в данном случае является метод эксперимента. В условиях средней полосы РФ длительная эксплуатация показывает возможность применения этого способа по­крытия максимума для подавляющего боль­шинства эксплуатируемых жилых зданий.

Фактическое использование аккумули­рующей способности отапливаемых (в основ­ном жилых) зданий началось с появления в тепловых сетях первых подогревателей горячего водоснабжения. Так, регулировка теплового пункта при параллельной схеме включения подогревателей горячего водо­снабжения (рис. 4.36) производилась таким образом, что в часы максимума водоразбора некоторая часть сетевой воды недодавалась в систему отопления. По этому же принципу работают тепловые пункты при открытом водоразборе. Как при открытой, так и закрытой системе теплоснабжения наиболь­шее снижение расхода в отопительной системе имеет место при температуре сете­вой воды 70 °С (60 °С) и наименьшее (нуле­вое) - при 150°С.

Рис. 4.36. Схема теплового пункта жилого дома с параллельным включением подогре­вателя горячего водоснабжения:

1 - подогреватель горячего водоснабжения; 2 - эле­ватор; 3 4 - цир­куляционный насос; 5 - регулятор температуры от датчика наружной температуры воздуха

Возможность организованного и заранее рассчитанного использования аккумулирую­щей способности жилых зданий реализо­вана в схеме теплового пункта с так называемым предвключенным подогревате­лем горячего водоснабжения (рис. 4.37).

Рис. 4.37. Схема теплового пункта жилого дома с предвключенным подогревателем го­рячего водоснабжения:

1 - подогреватель; 2 - элеватор; 3 - регулятор температуры воды; 4 - регулятор расхода; 5 - циркуляционный насос

Преимуществом предвключенной схемы является возможность работы теплового пункта жилого дома (при отопительном графике в тепловой сети) на постоянном расходе теплоносителя в течение всего отопи­тельного сезона, что делает гидравлический режим тепловой сети стабильным.

При отсутствии автоматического регули­рования в тепловых пунктах стабильность гидравлического режима явилась убедитель­ным аргументом в пользу применения двухступенчатой последовательной схемы включения подогревателей горячего водо­снабжения. Возможности применения этой схемы (рис. 4.38) по сравнению с предвклю­ченной возрастают из-за покрытия определен­ной доли нагрузки горячего водоснабжения за счет использования теплоты обратной воды. Однако применение данной схемы в основном связано с внедрением в тепловых сетях так называемого повышенного графика температур, с помощью которого и может достигаться примерное постоянство расходов теплоносителя на тепловом (например, для жилого дома) пункте.

Рис. 4.38. Схема теплового пункта жилого дома с двухступенчатым последовательным включением подогревателей горячего водо­снабжения:

1,2 - 3 - элеватор; 4 - регулятор температуры воды; 5 - регулятор расхода; 6 - перемычка для переклю­чения на смешанную схему; 7 - циркуляционный насос; 8 - смесительный насос

Как в схеме с предвключенным подогре­вателем, так и в двухступенчатой схеме с последовательным включением подогрева­телей имеет место тесная связь между отпуском теплоты на отопление и горячее водоснабжение, причем приоритет обычно отдается второму.

Более универсальной в этом отношении является двухступенчатая смешанная схема (рис. 4.39), которая может применяться как при нормальном, так и при повышенном отопительном графике и для всех потреби­телей независимо от соотношения нагрузок горячего водоснабжения и отопления. Обяза­тельным элементом обеих схем являются смесительные насосы.

Рис. 4.39. Схема теплового пункта жилого дома с двухступенчатым смешанным вклю­чением подогревателей горячего водоснабже­ния:

1,2 - подогреватели первой и второй ступеней; 3 - элеватор; 4 - регулятор температуры воды; 5 - циркуляционный насос; 6 - смесительный на­сос; 7 - регулятор температуры

Минимальная температура подаваемой воды в тепловой сети со смешанной тепло­вой нагрузкой составляет около 70 °С, что требует ограничения подачи теплоносителя на отопление в периоды высоких темпе­ратур наружного воздуха. В условиях средней полосы РФ эти периоды достаточно продолжительны (до 1000 ч и более) и пере­расход теплоты на отопление (по отноше­нию к годовому) из-за этого может достигать до 3 % и более. Так как современные системы отопления достаточно чувствитель­ны к изменению температурно-гидравлического режима, то для исключения пере­расхода теплоты и соблюдения нормальных санитарных условий в отапливаемых поме­щениях необходимо дополнение всех упомя­нутых схем тепловых пунктов устройствами для регулирования температуры воды, посту­пающей в системы отопления, путем установки смесительного насоса, что обычно и при­меняется в групповых тепловых пунктах. В местных тепловых пунктах при отсутст­вии бесшумных насосов как промежуточное решение может применяться также элеватор с регулируемым соплом. При этом надо учитывать, что такое решение неприемлемо при двухступенчатой последовательной схеме. Необходимость в установке смесительных насосов отпадает при присоединении систем отопления через подогреватели, так как их роль в этом случае выполняют циркуля­ционные насосы, обеспечивающие постоянст­во расхода воды в отопительной сети.

При проектировании схем тепловых пунк­тов в жилых микрорайонах при закрытой системе теплоснабжения основным вопросом является выбор схемы присоединения по­догревателей горячего водоснабжения. Вы­бранная схема определяет расчетные расходы теплоносителя, режим регулирования и пр.

Выбор схемы присоединения прежде всего определяется принятым температурным режи­мом тепловой сети. При работе тепловой сети по отопительному графику выбор схемы присоединения следует производить на основе технико-экономического расчета - путем сравнения параллельной и смешан­ной схем.

Смешанная схема может обеспечить более низкую температуру обратной воды в целом от теплового пункта по сравне­нию с параллельной, что помимо снижения расчетного расхода воды для тепловой сети обеспечивает более экономичную выработку электроэнергии на ТЭЦ. Исходя из этого в практике проектирования при теплоснаб­жении от ТЭЦ (а также при совместной работе котельных с ТЭЦ), предпочтение при отопительном графике температур от­дается смешанной схеме. При коротких тепло­вых сетях от котельных (и поэтому отно­сительно дешевых) результаты технико-экономического сравнения могут быть и дру­гими, т. е. в пользу применения более простой схемы.

При повышенном графике температур в закрытых системах теплоснабжения схема присоединения может быть смешанной или последовательной двухступенчатой.

Сравнение, выполненное различными ор­ганизациями на примерах автоматизации центральных тепловых пунктов, показывает, что обе схемы в условиях нормальной работы источника теплоснабжения примерно равноэкономичны.

Небольшим преимуществом последова­тельной схемы является возможность работы без смесительного насоса в течение 75 % продолжительности отопительного сезона, что давало прежде некоторые обоснования отказаться от насосов; при смешанной схеме насос должен работать весь сезон.

Преимуществом смешанной схемы яв­ляется возможность полного автоматического выключения систем отопления, что невоз­можно получить в последовательной схеме, так как вода из подогревателя второй сту­пени попадает в систему отопления. Оба указанных обстоятельства не являются ре­шающими. Важным показателем схем являет­ся их работа в критических ситуациях.

Такими ситуациями могут быть снижение температуры воды в ТЭЦ против графика (например, из-за временного недостатка топ­лива) либо повреждение одного из участ­ков магистральной тепловой сети при нали­чии резервирующих перемычек.

В первом случае схемы могут реагиро­вать примерно одинаково, во втором - по-разному. Имеется возможность 100%-го резервирования потребителей до t н = –15 °С без увеличения диаметров тепловых магистралей и перемы­чек между ними. Для этого при сокра­щении подачи теплоносителя на ТЭЦ одно­временно соответственно повышается темпе­ратура подаваемой воды. Автоматизирован­ные смешанные схемы (при обязательном наличии смесительных насосов) на это прореагируют сокращением расхода сетевой воды, что и обеспечит восстановление нор­мального гидравлического режима во всей сети. Такая компенсация одного параметра другим полезна и в других случаях, так как позволяет в определенных пределах проводить, например, ремонтные работы на тепловых магистралях в отопительный сезон, а также локализовать известные несоот­ветствия температуры подаваемой воды по­требителям, расположенным в разном удале­нии от ТЭЦ.

Если автоматизация регулирования схем с последовательным включением подогре­вателей горячего водоснабжения предусмат­ривает постоянство расхода теплоносителя из тепловой сети, возможность компен­сации расхода теплоносителя его темпера­турой в этом случае исключается. Не приходится доказывать всю целесообразность (в проектировании, монтаже и особенно в эксплуатации) применения единообразной схе­мы присоединения. С этой точки зрения несомненное преимущество имеет двухступен­чатая смешанная схема, которая может применяться независимо от графика температур в тепловой сети и соотношения нагрузок горячего водоснабжения и отопления.

Рис. 4.40. Схема теплового пункта жилого дома при открытой системе теплоснабжения:

1 - регулятор (смеситель) температуры воды; 2 - элеватор; 3 - обратный клапан; 4 - дроссельная шайба

Схемы присоединения жилых зданий при открытой системе теплоснабжения значи­тельно проще описанных (рис. 4.40). Эконо­мичная и надежная работа таких пунктов может быть обеспечена лишь при наличии и надежной работе авторегулятора темпера­туры воды, ручное переключение потреби­телей к подающей или обратной линии не обеспечивает необходимой температуры воды. К тому же система горячего водо­снабжения, подключенная к подающей линии и отключенная от обратной, работает под давлением подающего теплопровода. При­веденные соображения о выборе схем тепло­вых пунктов в одинаковой степени относятся как к местным тепловым пунктам (МТП) в зда­ниях, так и к групповым, которые могут обеспечивать теплоснабжение целых микро­районов.

Чем больше мощность теплоисточника и радиус действия тепловых сетей, тем прин­ципиально более сложными должны стано­виться схемы МТП, поскольку вырастают абсолютные давления, усложняется гидравли­ческий режим, начинает сказываться тран­спортное запаздывание. Так, в схемах МТП появляется необходимость применения на­сосов, средств защиты и сложной аппара­туры авторегулирования. Все это не только удорожает сооружение МТП, но и услож­няет их обслуживание. Наиболее рациональ­ным способом упрощения схем МТП является сооружение групповых тепловых пунктов (в виде ГТП), в которых и должно разме­щаться дополнительное сложное оборудова­ние и приборы. Этот способ наиболее применим в жилых микрорайонах, в которых характеристики систем отопления и горячего водоснабжения и, следовательно, схемы МТП однотипны.

ИНСТРУКЦИЯ

по обслуживанию оборудования ЦТП (ИТП)

1. ПОРЯДОК ПОЛЬЗОВАНИЯ ИНСТРУКЦИЕЙ

1. Инструкция должна быть вывешена на рабочем месте.

2. Инструкция выдается под расписку на руки оператору теплового пункта, остальные обязаны расписаться на контрольном экземпляре инструкции.

3. Контрольный экземпляр инструкции должен храниться у главного энергетика (механика) предприятия (организации, учреждения).

2. ОБЩИЕ ПОЛОЖЕНИЯ

1. Оператор теплового пункта находящийся на дежурстве несет ответственность за каждую аварию и за все повреждения или несчастные случаи, происшедшие по причине нарушения правил и инструкций.

2. Оператор теплового пункта непосредственно осуществляет осмотр, подготовку к пуску оборудования центрального теплового пункта, обслуживание и остановку оборудования. При необходимости привлекают других работников предприятия (организации).

3. В ЦТП должна находиться следующая документация:


  • тепломеханического оборудования;

  • электрооборудования;

  • КИП и А;

  • разводящих сетей после ЦТП с присоединенными зданиями и их характеристиками;

б) Температурный график;

в) Сменный журнал.

4. График ППР.

5. Ремонтный журнал.

6. Данная инструкция, должностная инструкция по ТБ и охране труда.

7. Инструкция по эксплуатации автоматики.

8. Инструкция по эксплуатации автоматики включения насосов.

9. Паспорт ЦТП.

В ЦТП должно быть также:

1. Таблица с указанием ответственных за эксплуатацию тепломеханического оборудования, электрооборудования, оборудования КИП и А и их телефонами.

2. На входных дверях табличка с номером ЦТП и указанием его принадлежности.

В ЦТП должен находиться запас эксплуатационных материалов: смазка, сальниковая набивка, паранит и т.д.

В ЦТП должна поддерживаться чистота и порядок, как при эксплуатации, так и при ремонтных работах.

Допуск посторонних лиц в ЦТП возможен только с разрешения руководства или ответственных лиц за исправное состояние и безопасную эксплуатацию ТУ и ТС.

3. Основные технические данные ЦТП

Центральный тепловой пункт - ЦТП предназначается для снабжения теплом систем отопления систем приточной вентиляции, кондиционирования воздуха и централизованного горячего водоснабжения подсоединенных к нему объектов.

ЦТП состоит из объемных элементов-агрегатов заводского изготовления.

Тепломеханическая часть ЦТП собирается из следующих агрегатов:

1. Агрегат теплового узла с водонагревателем горячего водоснабжения.

2. Агрегат водомерного узла с повысительными (хозяйственными) насосами.

3. Агрегат водонагревателя отопления с циркуляционными насосами.

4. Агрегат подпиточных насосов отопления.

5. Агрегат циркуляционных насосов системы горячего водоснабжения.

Источником тепла для ЦТП является __ район ОАО Московской теплосетевой компании с круглосуточной работой тепловых сетей при качественном регулировании. Теплоноситель - перегретая вода с параметрами 150 - 70°С.

ЦТП оборудуется ремонтным освещением при напряжении 36 В, водопроводом, канализацией, приточно-вытяжной вентиляцией, телефоном.

4. Схема центрального теплового пункта

Присоединение ЦТП к тепловым сетям осуществляется следующим образом:

Сетевая вода поступает в межтрубное пространство II-й ступени водоподогревателя горячего водоснабжения, а затем в систему отопления зданий, присоединенных к тепловым сетям по зависимой схеме - через элеваторы. В водоподогревателе отопления сетевая вода, проходя по латунным трубкам, отдает свое тепло местной воде системы отопления, проходящей в межтрубном пространстве.

Вода из обратных трубопроводов систем отопления и из водоподогревателя далее возвращается в наружные тепловые сети.

Водопроводная вода, проходя по трубам водоподогревателя водоснабжения I-й ступени, нагревается обратной водой примерно до 30°С, затем догревается во II-й ступени до 60°С.

В ЦТП для нужд горячего водоснабжения принят к установке скоростной водоподогреватель с латунными трубками диаметром 14-16, длина секции 4,0 м.

Во избежание вскипания нагреваемой воды предусматривается установка приборов автоматики, отключающей подачу сетевой воды при повышении температуры нагреваемой воды выше 60°С и снова включающих подачу сетевой воды при падении температуры ниже 60°С.

Для учета расхода тепла предусмотрен теплосчетчик типа ____________________. Первичные катушки, диаметром ______ мм установлены на прямом и обратном трубопроводах сетевой воды. На линии подпитки системы отопления установлен расходомер типа ____________, диаметром _____ мм.

Для учета расхода воды на горячее водоснабжение предусматривается установка на водопроводной линии, идущей к подогревателю, горячеводного водомера типа ____________, диаметром ____ мм.

Для циркуляции горячей воды в системе горячего водоснабжения устанавливается два насоса (один резервный).

Для циркуляции местной воды системы отопления устанавливается два насоса (один резервный) мощностью в зависимости от теплопотерь и емкости системы.

Подпитка независимой системы отопления осуществляется подпиточными насосами (один резервный).

В ЦТП установлены три водопроводных повысительных насоса мощностью и напором, зависящим от количества разбираемой воды и этажности зданий. Во избежание повышения давления в местной системе холодного водоснабжения выше 60 м.вод.ст., устанавливаются 2 регулирующих клапана “после себя”.

5. Тепломеханическая часть

1. В агрегат теплового узла с водоподогревателями горячего водоснабжения входят:

а) стальные головные задвижки;

б) стальные задвижки отопления;

в) стальные секционные задвижки, отключающие:

II-ю ступень от системы отопления;

II-ю ступень от первой ступени;

I-ю ступень от системы отопления.

Помимо этого на агрегате методом сварки установлены грязевики на подающей линии и грязевики на обратной линии из систем отопления, манометры, термометрические гильзы с термометрами, пробковые и 3-х ходовые латунные краны, соединительные импульсные трубки, термореле на линии ГВС, автоматика типа ____________________________________.

6. Ежедневный технический осмотр оборудования ЦТП

Оператор теплового пункта должен ежедневно выполнять следующий объем работ:

1. Произвести внешний осмотр всего оборудования.

2. Проверить нет ли подтекания воды через сальники насосов, задвижек и фланцевые соединения трубопроводов, при необходимости подтянуть сальники и фланцевые соединения.

3. Проверить работу резервных и дополнительных насосов путем кратковременного включения их в работу с щита управления.

4. Включить подпиточный насос, проверить работу подпитки местной системы отопления.

5. Проверить работу насосов и электродвигателей на нагрев подшипников, вибрацию и посторонние шумы; при необходимости принять меры по выявлению причин и устранению неисправностей.

6. Проверить на щите управления автоматикой положение переключателей режимов работы и состояние сигнальных ламп; переключатели должны быть установлены в положение “Автоматическое”, на щите должны гореть сигнальные лампы работающих насосов и сигнальная лампа “Питание”.

7. Убедиться в закрытии дверей электрошкафов.

8. Снять показания контрольно-измерительных приборов (каждые ___ часа), записать их в сменный журнал и сравнить о нормативными параметрами:

(давление на прямом и обратном трубопроводах, температуру на прямом и обратном теплопроводах, давление и температуру в местных системах теплопотребления и т.д.).

В случае расхождения параметров принять меры по выявлению и устранению причин.

7. Устройство оборудования ЦТП

Водоподогреватели горячего водоснабжения набираются из отдельных секций в зависимости от нагрузки горячего водоснабжения.

Подогреватели рассчитаны на рабочее давление 10 атм и температуру 150°С и должны подвергаться гидравлическим испытаниям с обеих сторон на 12,5 атм.

К водоподогревателю относится также входной и выходной патрубки и соответствующее количество калачей для соединения трубного пучка. Патрубок для выхода местной нагретой воды имеет штуцер для ввертывания термореле. Отдельные секции водоподогревателя соединяются посредством фланцев и болтов.

Водоподогреватели покрываются изоляцией.

Оператор ЦТП обязан:

1. Следить за плотностью фланцевых соединений водоподогревателей (крепление фланцевых соединений производится постепенным завинчиванием гаек “накрест”).

2. Следить за запорной арматурой, задвижки должны всегда находиться в таком состоянии, чтобы их можно было легко открыть и закрыть. Это достигается периодической смазкой шпинделя, нормальной затяжкой сальника и предотвращением прикипания уплотнительных поверхностей.

3. При появлении течи в сальнике, последний необходимо затягивать.

4. Следить за наружной поверхностью задвижек, вентилей, кранов, поверхность должна быть чистой, а резьба болтов смазана маслом с разведенным в нем графите.

Примечание : обслуживающий персонал должен знать, что запрещается применение добавочных рычагов при открывании и закрывании задвижек.

5. В период летнего ремонта производить снятие калачей, промывку, чистку труб.

Уход за грязевиками.

При необходимости прочистки грязевика:

1. Отключают ЦТП на входе и выходе.

2. Разбалчивают люк, вытаскивают сетки и промывают их. Грязь, скопившуюся, на дне, убирают.

3. Частичные чистки грязевиков осуществляются периодическими продувками незначительных количеств сетевой воды.

Уход за кранами.

1. Не реже одного раза в смену, провернуть латунный кран.

2. При профилактических ремонтах запорные органы кранов очищать и смазывать.

3. Набивать сальники пробковых кранов новой набивкой.

Уход за обратными клапанами.

В случае поломки сетевой шпильки или ушек заслонки клапана необходимо:

1. Закрыть задвижки до и после клапанов.

2. Вскрыть крышку клапана и произвести необходимый ремонт.

3. При обнаружении течи из-под крышки обратного клапана меняется прокладка.

4. При нарушении плотности корпуса обратного клапана заменяют новыми.

Работа насосов и правила их включения и отключения.

Пуск насоса:

Перед началом пуска насоса необходимо:

1. Проверять наличие масла в подшипниках и заполнение насоса водой.

2. Открыть задвижку на всасывающей линии и проверить закрытие задвижки на нагнетательной линии.

3. Проверить исправность пускового устройства электродвигателя.

4. Включить электродвигатель, проверяя при этом направление его вращения.

5. После того, как насос развил нормальное число оборотов и нормальное давление, медленно открывают запорную задвижку на нагнетательной линии.

При работе насоса необходимо:

1. Следить за смазкой подшипников, периодически доливать чистое масло.

2. При повышении температуры подшипников более 60 0 С нужно усиленно подавать смазку для охлаждения и выяснить причину повышения температуры.

3. После каждых 500 часов работы насосов полностью менять в подшипниках грязное масло, а камеры промывать керосином.

Остановка центробежного насоса производится в следующей последовательности:

1. Закрыть задвижку на нагнетательной линии и кран на манометре.

2. Выключить электродвигатель.

3. Закрыть задвижку на всасывающей линии.

4. При переходе на другой насос дождаться полной остановки первого.

Неисправности в работе центробежного насоса.

1. Насос не подает воду (вращение вала в обратном направлении, насос не залит водой, велика высота всасывания).

2. Просачивается вода через сальниковое уплотнение.

3. Не открывается или перекошен обратный клапан на нагнетательном патрубке.

4. Недостаточное напряжение электрической сети (недостаточное число оборотов).

5. Неправильное включение фазы или нет одной фазы (вращение эл. двигателя в обратном направлении, гудение эл. двигателя).

6. Снижен напор насоса (изношено колесо, загрязнение насоса).

Обслуживание систем автоматики и КИП.

Обслуживающий персонал обязан:

1. Периодически продувать импульсные линии и 3-ходовые краны под манометрами и электро-контактными манометрами (ЭКМ).

2. Знать и уметь отключать в шкафу автоматики аварийно-включенный циркуляционный или хозяйственный насос.

3. Уметь заменить импульсные трубки и термореле.

4. Вовремя заливать термометрические гильзы маслом.

5. Следить за исправным состоянием термометров и манометров.

8. Еженедельное техническое обслуживание ЦТП

Провести следующие работы:

1. Очистить оборудование от ржавчины, пыли и подтеков масла;

2. Проверить наличие смазки на шпинделях задвижек, при необходимости смазать.

3. Проверить состояние сальниковых уплотнений задвижек (подтекание воды через сальниковые уплотнения не допускается).

4. На ощупь проверить нагрев корпусов насосов и электродвигателей во время работы насосных агрегатов, в случае, если температура корпуса окажется выше 60-70°С выявить причины, способствующие перегреву и устранить их.

5. Проверить состояние сальниковых уплотнений насоса (при работе насоса вода из сальника должна просачиваться отдельными каплями или тонкой струйкой), при необходимости подтянуть сальниковые уплотнения или заменить сальниковую набивку.

6. Определить по маслоуказателям наличие смазки в масляных ваннах (корпусах подшипников), при необходимости пополнить смазку до установленного уровня.

7. Определить состояние упругих муфт насосных агрегатов прокручиванием (вручную) вала остановленного агрегата, в случае износа резиновых пальцев - заменить их.

8. Проверить надежность крепления насосных агрегатов к рамам, подтянуть болтовые соединения.

9. Проверить работу всех резервных и дополнительных насосов кратковременным включением их в работу путем имитации изменения параметров настройки на ЭКМ или другим методом в ручном режиме.

10. Внешним осмотром проверить надежность заземления всего электрооборудования.

11. Определить работоспособность аварийного освещения ЦТП.

12. Убедиться в отсутствии внутри сборок и электрических шкафов посторонних предметов, а также влаги и коррозии деталей.

13. Установить характер гудения работающих контакторов и магнитных пускателей (чрезмерного гудения, дребезжания не должно быть).

14. Визуально проверить, нет ли перегрева контактных соединений шин и других контактных деталей (подгорания, изменения цвета шин или контактных частей, запаха озона).

15. Определить состояние предохранителей, перегоревшие или нестандартные плавкие предохранители - заменить).

16. Убедиться в целостности манометров и термометров и правильности их показаний.

17. Проверить состояние гильз термометров, при необходимости очистить их от грязи и долить масло.

18. Продуть манометры кратковременным открытием трехходовых кранов.

19. Произвести корректировку настройки тепловой автоматики.

20. Подкрасить оборудование и трубопроводы (при необходимости).

21. Сделать химический анализ сетевой воды с целью определения гидравлической плотности подогревателей (1 раз в месяц).

22. Проверить наличие и ведение технической документации теплового пункта.

23. Установить наличие и исправность защитных диэлектрических и противопожарных средств (защитные средства с истекшими сроками годности или неисправные - заменить).

24. Произвести влажную уборку помещения теплового пункта.

25. Сделать запись в оперативном: журнале о выполнении еженедельного технического обслуживания.

Все замечания и неисправности, выявленные при техническом осмотре и обслуживании, подлежат устранению. После устранения неисправностей убедиться в нормальной работе инженерных систем и оборудования. По окончании технического обслуживания все инженерные системы и оборудование тепловых пунктов должны быть приведены в исходное состояние, обеспечивающее нормальную работу всех систем.

9. Ремонт ЦТП

В соответствии с графиком ППР производятся ремонты: текущие - один раз в три месяца, капитальные не реже одного раза в год.

Водоподогреватели подлежат ежегодной промывке, а при сопротивлении более 0,3 мм.в.ст. механической чистке или кислотной промывке, а затем гидравлическим испытаниям на 12 атм.

10. Оператором теплового пункта запрещено:

1. Открывать эл.шкафы и производить в них ремонтные работы.

2. Отключать зл.двигатели от сети.

3. Производить работы на эл. оборудовании ЦТП.

11. Оператор теплового пункта должен:

1. Вести периодическую запись параметров теплоносителя и горячей воды.

2. Следить за часовым расходом сетевой и горячей воды.

4. Вести запись в журнале выявленных дефектов оборудования.

5. Записывать в журнале, какие насосы работают в настоящее время, какие переключения произошли или произведены оператором теплового пункта.

6. Периодически обходить ЦТП записывать дефекты и параметры в специальном журнале обхода.

7. Совместно с ответственным лицом за исправное состояние и безопасную эксплуатацию ТУ и ТС допускать инспектора “Мосгосэнергонадзора” к проверке работы оборудования ЦТП и технической документации.

12. Прием и сдача дежурства

1. Принимающий смену оператор теплового пункта обязан явиться на дежурство согласно утвержденному графику (в случае болезни он должен заблаговременно, до начала смены, поставить в известность главного энергетика (механика) или инженера.

2. Принимающий смену оператор теплового пункта обязать явиться для приемки смены за 20 минут до начала работы и ознакомиться с записями в журнале со всеми распоряжениями поступившими во время его предыдущего дежурства, с изменениями в графике, с неполадками в работе оборудования.

3. Сдавший смену обязан ознакомить принимающего дежурство с состоянием и режимом работы сдаваемого им оборудования. Необходимо сообщить какие насосы находятся в резерве или в ремонте, какие ремонтные работы производились или будут производиться в ближайшую смену.

4. Сдающий смену обязан произвести уборку в помещении ЦТП и оборудования.

13. Принимающий смену оператор теплового пункта отвечает:

1. За неисправность и неудовлетворительное состояние оборудования предыдущей смены, на неотмеченные записи в журнале при приеме смены.

2. За наличие записей в журнале выявленных дефектов оборудования и за снятие показателей.

Когда речь заходит о рациональном использовании тепловой энергии, все сразу же вспоминают о кризисе и неимоверных счетах по «жировкам», им спровоцированных. В новых домах, где предусмотрены инженерные решения, позволяющие регулировать потребление тепловой энергии в каждой отдельной квартире, можно найти оптимальный вариант отопления или горячего водоснабжения (ГВС), который устроит жильца. В отношении старых строений дело обстоит куда сложнее. Индивидуальные тепловые пункты становятся единственным разумным решением задачи экономии тепла для их обитателей.

Определение ИТП — индивидуальный тепловой пункт

Согласно хрестоматийному определению ИТП — это не что иное, как тепловой пункт, предназначенный для обслуживания целого здания или отдельных его частей. Эта сухая формулировка требует пояснения.

Функции индивидуального теплового пункта заключаются в перераспределении энергии, поступающей из сети (центральный тепловой пункт или котельная) между системами вентиляции, ГВС и отопления, в соответствии с потребностями здания. При этом учитывается специфика обслуживаемых помещений. Жилые, складские, подвальные и другие их виды, разумеется, должны отличаться и по температурному режиму и параметрам вентиляции.

Установка ИТП подразумевает наличие отдельного помещения. Чаще всего оборудование монтируется в подвальных или технических помещениях многоэтажек, пристройках к многоквартирным домам или в отдельно стоящих строениях, находящихся в непосредственной близости.

Модернизация здания путем установки ИТП требует существенных финансовых затрат. Несмотря на это, актуальность ее проведения продиктована преимуществами, сулящими несомненные выгоды, а именно:

  • расход теплоносителя и его параметры подвергаются учету и оперативному контролю;
  • распределение теплоносителя по системе в зависимости от условий теплопотребления;
  • регулирование расхода теплоносителя, в соответствии с возникшими требованиями;
  • возможность изменения вида теплоносителя;
  • повышенный уровень безопасности в случаях аварий и прочие.

Возможность влиять на процесс расхода теплоносителя и его энергетические показатели привлекательна сама по себе, не говоря об экономии от рационального использования тепловых ресурсов. Единовременные же затраты на оборудование ИТП с лихвой окупятся за весьма скромный промежуток времени.

Структура ИТП зависит от того, какие системы потребления он обслуживает. В общем случае в его комплектацию могут входить системы обеспечения отопления, ГВС, отопления и ГВС, а также отопления, ГВС и вентиляции. Поэтому в состав ИТП обязательно входят следующие устройства:

  1. теплообменники для передачи тепловой энергии;
  2. арматура запорного и регулирующего действия;
  3. приборы для контроля и измерения параметров;
  4. насосное оборудование;
  5. щиты управления и контроллеры.

Здесь приведены лишь устройства, присутствующие на всех ИТП, хотя каждый конкретный вариант может иметь и дополнительные узлы. Источник холодного водоснабжения, обычно находится в том же помещении, например.

Схема теплового пункта отопления построена с использованием пластинчатого теплообменника и является полностью независимой. Для поддержания давления на требуемом уровне устанавливается сдвоенный насос. Предусмотрен простой способ «доукомплектации» схемы системой горячего водоснабжения и другими узлами, и агрегатами, включая приборы учета.

Работа ИТП для ГВС подразумевает включение в схему пластинчатых теплообменников, работающих только на нагрузку по ГВС. Перепады давления в этом случае компенсируются группой насосов.

В случае организации систем для отопления и ГВС выше рассмотренные схемы объединяются. Пластинчатые теплообменники отопления работают вместе с двухступенчатым контуром ГВС, причем подпитка системы отопления осуществляется от обратного трубопровода теплосети посредством соответствующих насосов. Сеть холодного водоснабжения же является подпитывающим источником для системы ГВС.

Если к ИТП необходимо подключить и систему вентиляции, то он оснащается еще одним пластинчатым теплообменником, связанным с ней. Отопление и ГВС продолжают работать по ранее описанному принципу, а контур вентиляции подключается аналогично отопительному с добавлением необходимых контрольно-измерительных приборов.

Индивидуальный тепловой пункт. Принцип работы

Центральный тепловой пункт, являющийся источником теплоносителя, подает горячую воду на вход индивидуального теплового пункта через трубопровод. Причем эта жидкость никоим образом не попадает ни в одну из систем здания. Как для отопления, так и для подогрева воды в системе ГВС, а также вентиляции используется исключительно температура подаваемого теплоносителя. Передача энергии в системы происходит в теплообменниках пластинчатого типа.

Температура передается магистральным теплоносителем воде, забранной из системы холодного водоснабжения. Итак, цикл движения теплоносителя начинается в теплообменнике, проходит через тракт соответствующей системы, отдавая тепло, и по обратному магистральному водопроводу возвращается для дальнейшего использования на предприятие, обеспечивающее теплоснабжение (котельную). Часть цикла, предусматривающая отдачу тепла, обогревает жилища и делает воду в кранах горячей.

Холодная вода поступает в подогреватели из системы холодного водоснабжения. Для этого используется система насосов, поддерживающих требуемый уровень давления в системах. Насосы и дополнительные устройства необходимы для снижения, либо повышения, давления воды из снабжающей магистрали до допустимого уровня, а также его стабилизации в системах здания.

Преимущества использования ИТП

Четырехтрубная система теплоснабжения от центрального теплового пункта, применявшаяся раньше достаточно часто, имеет массу недостатков, которые отсутствуют у ИТП. Кроме того, последний имеет ряд весьма значительных преимуществ перед конкурентом, а именно:

  • экономичность, обусловленная значительным (до 30%) снижением потребления тепла;
  • доступность приборов упрощает контроль как за расходом теплоносителя, так и количественными показателями тепловой энергии;
  • возможность гибкого и оперативного влияния на расход тепла путем оптимизации режима его потребления, в зависимости от погоды, например;
  • простота монтажа и довольно скромные габаритные размеры устройства, позволяющие размещать его в небольших помещениях;
  • надежность и стабильность работы ИТП, а также благоприятное влияние на те же характеристике обслуживаемых систем.

Этот перечень можно продолжать сколь угодно долго. Он отражает лишь основные, лежащие на поверхности, преимущества, получаемые при использовании ИТП. В него можно добавить, например, возможность автоматизации управления ИТП. В этом случае его экономические и эксплуатационные показатели становятся еще более привлекательными для потребителя.

Наиболее существенным недостатком ИТП, если не считать транспортных расходов и затрат на погрузочно-разгрузочные мероприятия, является необходимость улаживания всевозможного рода формальностей. Получение соответствующих разрешений и согласований можно отнести к очень серьезным задачам.

Фактически, такие задачи сможет решить только специализированная организация.

Этапы установки теплового пункта

Понятно, что одного решения, пусть и коллективного, основанного на мнении всех жильцов дома, недостаточно. Кратко процедуру оснащения объекта, многоквартирного дома, например, можно описать следующим образом:

  1. собственно, позитивное решение жильцов;
  2. заявка в теплоснабжающую организацию для разработки технического задания;
  3. получение технических условий;
  4. пред проектное обследование объекта, для определения состояния и состава имеющегося оборудования;
  5. разработка проекта с последующим его утверждением;
  6. заключение договора;
  7. реализация проекта и проведение пусконаладочных испытаний.

Алгоритм может показаться, на первый взгляд, достаточно сложным. На самом же деле, всю работу начиная от решения и заканчивая принятием в эксплуатацию можно сделать менее чем за два месяца. Все заботы нужно возложить на плечи ответственной компании, специализирующейся на оказании подобного рода услуг и позитивно зарекомендовавшей себя. Благо, сейчас таковых предостаточно. Останется лишь дожидаться результата.

Центральный тепловой пункт (в последующем ЦТП) является одним из элементов тепловой сети, расположенной в поселениях городского типа. Он выступает в роли связывающего звена между магистральной сетью и распределительными тепловыми сетями, которые идут непосредственно к потребителям тепловой энергии (в жилые дома, детсады, больницы и т.д.).

Обычно центральные тепловые пункты размещаются в отдельно стоящих сооружениях и обслуживают несколько потребителей. Это так называемые квартальные ЦТП. Но иногда такие пункты располагаются в техническом (чердачном) или подвальном помещении здания и предназначаются для обслуживания только этого здания. Такие тепловые пункты называются индивидуальными (ИТП).

Основные задачи тепловых пунктов – распределение теплоносителя и защита теплосетей от гидравлических ударов и утечек. Также в ТП контролируется и регулируется температура и давление теплоносителя. Температура воды, поступающая в отопительные приборы, подлежит регулировке относительно температуры наружного воздуха. То есть чем холоднее на улице, тем выше температура, подаваемая в распределительные тепловые сети.

Особенности работы ЦТП монтаж тепловых пунктов

Центральные тепловые пункты могут работать по зависимой схеме, когда теплоноситель с магистральной сети поступает непосредственно к потребителям. В этом случае ЦТП выступает в роли распределительного узла – теплоноситель делится для системы горячего водоснабжения (ГВС) и системы отопления. Вот только качество горячей воды, льющейся из наших кранов при зависимой схеме подключения, часто вызывает нарекания потребителей.

При независимом режиме работы, здание ЦТП оборудуется специальными подогревателями – бойлерами. В этом случае перегретая вода (с магистрального трубопровода) нагревает воду, проходящую по второму контуру, которая в дальнейшем и идет к потребителям.

Зависимая схема является экономически выгодной для ТЭЦ. Она не требует постоянного присутствия персонала в здании ЦТП. При такой схеме монтируются автоматические системы, которые позволяют дистанционно управлять оборудованием центральных тепловых пунктов и регулировать основные параметры теплоносителя (температуру, давление).

ЦТП оборудуются различными приборами и агрегатами. В зданиях тепловых пунктов монтируется запорно-регулирующая арматура, насосы ГВС и отопительные насосы, приборы контроля и автоматики (регуляторы температуры, регуляторы давления), водо-водяные подогреватели и прочие приборы.

Помимо рабочих насосов отопления и ГВС обязательно должны присутствовать резервные насосы. Схема работы всего оборудования в ЦТП продумывается таким образом, что работа не прекращается даже в аварийных ситуациях. При длительном выключении электроэнергии или в случае возникновения чрезвычайных происшествий жители не останутся надолго без горячей воды и отопления. В этом случае будут задействованы аварийные линии подачи теплоносителя.

К обслуживанию оборудования, непосредственно связанного с тепловыми сетями, допускаются только квалифицированные работники.

Центральный тепловой пункт блочного типа будет иметь надежное оборудование. Причина и отличия от пресловутого ЦТП? Пункты тепловые западного производителя почти не имеет никаких запасных элементов. Как правило, подобные тепловые пункты укомплектованные паянными теплообменниками, что как минимум в полтора, а то и два раза дешевле, чем разборные. Но важно сказать, что тепловые центральные пункты такого типа будут обладать сравнительно небольшой массой и габаритов. Элементы ИТП очищают химическим путем – собственно, это главная причина, по которой такие теплообменники способны прослужить около десятилетия.

Основные этапы проектирования ЦТП

Неотъемлемой частью капитального строительства или реконструкции центрального теплового пункта является его проектирование. Под ним понимаются комплексные поэтапные действия, направленные на расчет и создание точной схемы теплового пункта, получение необходимых согласований у снабжающей организации. Также проектирование ЦТП включает в себя рассмотрение всех вопросов, непосредственно связанных с конфигурацией, функционированием и обслуживанием оборудования для теплового пункта.

На начальном этапе проектирования ЦТП производится сбор необходимых сведений, которые в последующем необходимы для проведения расчетов параметров оборудования. Для этого сначала устанавливается общая длина коммуникаций трубопроводов. Эта информация для проектировщика представляет особую ценность. Кроме того, в сбор сведений входит информация о температурном режиме здания. Эти сведения в последующем необходимы для правильной настройки оборудования.

При проектировании ЦТП необходимо указывать меры безопасности эксплуатации оборудования. Для этого нужна информация о структуре всего здания – расположение помещений, их площадь и прочие необходимые сведения.

Согласование в соответствующих органах.

Все документы, которые включает в себя проектирование ЦТП, обязательно должны быть согласованы с муниципальными эксплуатационными органами. Для быстрого получения положительного результата важно грамотно составить всю проектную документацию. Поскольку реализация проекта и сооружение центрального теплового пункта производится только после того, как процедура согласования будет окончена. В противном случае требуется доработка проекта.

Документация по проектированию ЦТП кроме непосредственно самого проекта должна содержать пояснительную записку. Она содержит необходимые сведения и ценные указания для монтажников, которые будут осуществлять установку центрального теплопункта. В пояснительной записке указывается порядок выполнения работ, их последовательность и необходимые инструменты для монтажа.

Составление пояснительной записки – заключительный этап. Этим документом заканчивается проектирование ЦТП. Монтажники в своей работе обязательно должны следовать указаниям, изложенным в пояснительной записке.

При тщательном подходе к разработке проекта ЦТП и правильном расчете необходимых параметров и режимов работы удается добиться безопасной работы оборудования и его продолжительной безупречной работы. Поэтому важно учитывать не только номинальные показатели, но также и запас мощности.

Это крайне важный аспект, поскольку именно запас мощности позволит сохранить пункт подачи тепла в рабочем состоянии после аварии или возникновения внезапной перегрузки. Нормальное функционирование теплового пункта напрямую зависит от правильно составленных документов.

Руководство по монтажу центрального теплового пункта

Кроме самого составления проекта центрального теплового пункта в проектной документации должна находиться и пояснительная записка, которая содержит указания монтажникам по использованию различных технологий при проведении монтажа теплового пункта, указывается в этом документе последовательность работ, вид инструментов и др.

Пояснительная записка это документ, составлением которого заканчивается проектирование ЦТП , и которым обязательно должны руководствоваться монтажники при монтажных работах. Неукоснительное следование рекомендациям, записанным в этом важном документе, будет гарантировать нормальное функционирование оборудования центрального теплового пункта в соответствии с предусмотренными расчетными характеристиками.

Проектирование ЦТП предусматривает также разработку предписаний по текущему и сервисному обслуживанию оборудования ЦТП. Тщательная разработка этой части проектной документации позволяет продлить срок эксплуатации оборудования, а также повысить безопасность его использования.

Центральный тепловой пункт - монтаж

При монтаже ЦТП проводятся неизменные определенные этапы выполняемых работ. Первым делом составляется проект. В нем учитываются основные особенности функционирования ЦТП, такие, как количество обслуживаемой площади, расстояние для прокладки труб, соответственно минимальная мощность будущей котельной. После проводится углубленный анализ проекта и поставляемой с ним технической документации для исключения всех возможных ошибок и неточностей для обеспечения нормальной функциональности монтируемых ЦТП длительное время. Составляется смета, потом закупается все необходимое оборудование. Следующим шагом является монтаж теплотрассы. Он содержит в себе непосредственно прокладку трубопровода и установку оборудования.

Что такое тепловой пункт?

Тепловой пункт - это специальное помещение, где расположен комплекс технических устройств, являющихся элементами тепловых энергоустановок. Благодаря этим элементам обеспечивается присоединение энергоустановок к теплосети, работоспособность, возможность управления разными режимами теплопотребления, регулирование, трансформацию параметров носителя тепла, а также распределение теплоносителя согласно типам потребления.

Индивидуальный – лишь тепловой пункт, в отличие от центрального, можно смонтировать и в коттедже. Обратите внимание, что такие тепловые пункты не требуют постоянного присутствия обслуживающего персонала. Вновь выгодно отличаясь от центрального теплового пункта. Да и вообще – обслуживание ИТП , по сути, состоит лишь в проверке на утечки. Теплообменник же теплового пункта способен самостоятельно очищаться от возникающей тут накипи – это заслуга молниеносного температурного перепада во время разбора горячей воды.

Статьи по теме: