Климатический регулятор для отопления многоквартирных домов. Автоматическое регулирование потребления тепловой энергии. За счёт чего достигается экономия

Погодное регулирование - это регулирование температуры воды в системе отопления в зависимости от наружной температуры. Процесс регулирования под управлением контроллера выполняется в узле смешения регулирующим клапаном, смешивающий теплоноситель из подающего трубопровода с более высокой температурой с теплоносителем из обратного трубопровода с низкой температурой. Таким образом регулируется температура теплоносителя, поступающего непосредственно в приборы отопления - радиаторы, конвекторы. Погодная компенсация, осуществляемая в индивидуальных тепловых пунктах (ИТП), гарантирует наиболее комфортные условия для проживания и работы и в существенной степени влияют на показания теплосчетчиков в АСКУЭ в сторону уменьшения энергопотребления, и, соответственно экономят энергоресурсы.

Система погодного регулирования – очень надежный новейший способ, позволяющий сэкономить тепловую энергию. Работает она с поправкой не только на изменение температуры окружающей среды, но и на температуру, изменяющуюся в помещении. Температура устанавливается в автоматическом режиме по заданному температурному графику дифференцировано по дням недели и даже по часам суток. Установка и грамотная эксплуатация данной системы в комплексе с приборами учета тепловой энергии обеспечит экономию энергоресурсов, и соответственно, Ваших денег.

Системы погодного регулирования устанавливают с целью автоматического обеспечения в помещениях требуемой температуры и снижения платежей за тепло. Наше предложение по установке модульного исполнения погодного регулирования СУАПР является очень конкурентоспособным.

Предмет предложения. Поставка Смесительных Узлов Автоматического Погодного Регулирования (СУАПР) производства ООО “Теплотрон”.
Назначение СУАПР. Снижение платежей за потребляемую тепловую энергию жителями многоквартирных домов (на 18 % — 25 %) и обеспечение постоянной комфортной температуры во всех жилых помещениях.

  1. Краткое описание СУАПР.

Большинство жилых и общественных зданий обеспечивается теплом от ТЭЦ и котельных. Температура теплоносителя, подаваемого потребителям, регулируется централизованно на источниках тепла, в соответствии с температурой наружного воздуха. Существующие системы теплоснабжения в основном оснащены водоструйными элеваторами, которые не позволяют регулировать температуру подаваемого в здания теплоносителя. Снижение температуры теплоносителя в общественных зданиях во время отсутствия в них людей и в жилых зданиях в определенные переходные периоды позволяет существенно снизить затраты на отопление.

Применение разработанного специалистами ООО “Теплотрон” смесительного узла автоматического погодного регулирования СУАПР (зарегистрирован в Госреестре РФ под № 010/019586), который устанавливается взамен нерегулируемого водоструйного элеватора позволяет добиться комфортных условий для пребывания людей и снизить затраты на отопление с минимальными временными и материальными затратами. За счет соответствия тепловой нагрузки, габаритных и присоединительных размеров при внедрении СУАПР не требуется проектирования и проведения сварочных работ по реконструкции теплового пункта. Вся работа по реконструкции ИТП состоит в демонтаже существующего элеватора и установке на его место СУАПР с соответствующими тепловой нагрузкой и типоразмерами. При установке СУАПР не требуется проект (в ряде случаев теплоснабжающие компании согласовывают данное техническое решение на основе представленного типового проекта), высококвалифицированный персонал, отпадает необходимость сварочных работ. Наладка СУАПР производится в заводских условиях, никаких дополнительных настроек на объекте не требуется. Таким образом, применение СУАПР по сравнению с традиционными системами автоматического погодного регулирования позволяет существенно снизить материальные и временные затраты на внедрение, а значит сократить сроки окупаемост и.

Согласно письма — Заместителя руководителя Северо-Западного управления Федеральной Службы по экологическому и атомному надзору (РОСТЕХНАДЗОР), разрешение на допуск в эксплуатацию СУАПР не требуется.

Элеватор водоструйный типа 40с10бк СУАПР с аналогичными размерами и
тепловой нагрузкой

СУАПР оснащается интеллектуальным контроллером РПТ-1.2Д, который, получая сигнал от трех датчиков температуры (наружный воздух, подающий и обратный трубопровод), по заданному алгоритму управляет запорно-регулирующим клапаном КРТ с электроприводом и промышленным насосом (или двумя насосами) . РПТ-1.2Д, КРТ и Термодатчики также производятся компанией “Теплотрон”.
РПТ-1.2Д является 2-х контурным регулятором, что позволяет при необходимости организовать регулирование на только отопления, но и ГВС с минимальными затратами.
Благодаря применению СУАПР достигается автоматическое регулирование параметров теплопотребления (контроль над параметрами поступающего теплоносителя, обеспечение соблюдения температурного графика, регулирование параметров теплоносителя в соответствии с температурой наружного воздуха) с целью поддержания комфортных условий во внутренних помещениях здания и рационального использования тепловой энергии. Отмечаем, что составные части СУАПР (контроллер РПТ-1.2.Д, запорно-регулирующие клапана КРТ, термодатчики) нашли широкое применение в различных регионах РФ и стран Евразийского Союза.

Пример монтажа СУАПР (система отопления жилого 5-ти этажного дома):


Таким образом, СУАПР представляет собой полноценный узел автоматического погодного регулирования модульного исполнения. Во всех помещениях здания, в котором установлен СУАПР, автоматически поддерживается требуемая (заданная) температура.

2. Подбор СУАПР под конкретный объект, монтаж и запуск в эксплуатацию.

Модель СУАПР (всего производится семь моделей СУАПР) подбирается в зависимости от тепловой нагрузки (расходов теплоносителя) системы теплоснабжения здания. Все требуемые данные, в том числе и геометрические размеры установленного нерегулируемого элеватора, заносятся в опросный лист на СУАПР. Обычно опросный лист на СУАПР заполняется Заказчиком или специализированной организацией. Правильно заполненный опросный лист является результатом обследования объекта и гарантирует простоту монтажа и работоспособность СУАПР .

Изготовленный под конкретный объект СУАПР поставляется в собранном состоянии, готовый к установке, в ящиках размером 1000 мм х 1000мм х 600 мм. Масса брутто не более 55 кг . При установке СУАПР сварочных работ не требуется . СУАПР устанавливается в посадочные гнезда демонтированного нерегулируемого элеватора. Средняя продолжительность работ по установке СУАПР двумя сантехниками — 4-6 часов (с учетом демонтажа нерегулируемого элеватора). Для установки СУАПР не требуется специальных знаний.

После монтажа СУАПР необходимо:

— поместить датчик температуры наружного воздуха (входит в состав СУАПР) на северную стену здания;
— подвести питание 220 В к СУАПР.
СУАПР поставляется полностью готовым к работе на конкретном объекте и не требует дополнительных настроек. В случае необходимости СУАПР легко перенастраивается непосредственно на объекте под требуемый температурный график. Настройка СУАПР производится с клавиатуры РПТ-1.2.Д без применения дополнительных инструментов и программного обеспечения. Возможно дистанционное считывание информации и управление СУАПР посредством задействования GSM-модемов.
В стандартном исполнении СУАПР контроллер РПТ-1.2.Д размещается на раме СУАПР. Возможно размещение РПТ-1.2.Д в отдельном щите автоматики. Требуемое размещение РПТ-1.2.Д указывается в опросном листе.
Типовые проекты на СУАПР при необходимости будут согласованы с теплоснабжающими организациями города Таганрога и Ростова на Дону.
Для технической поддержки внедренного оборудования будут привлечены представители ООО “Теплотрон” по Ростовской области.

3. Стоимость СУАПР

Ниже в таблицах (№ 2 и №3) приведены прайсовые стоимости моделей СУАПР (склад Санкт-Петербург) в зависимости от тепловой нагрузки здания.
Таблица №2.

Гкал/час

Модификация СУАПР

(один насос)

Расход воды

из сети, т/час

Цена за штуку,

рубли

СУАПР№1-102 0,5-1 0,04-0,08 212 400
СУАПР№2-102 1-2 0,08-0,16 218 300
СУАПР№3-102 2-3 0,16-0,24 285 560
СУАПР№4-102 3-5 0,24-0,4 297 360
СУАПР№5-102 5-10 0,4-0,8 319 780
СУАПР№6-102 10-15 0,8-1,2 339 840
СУАПР№7-102 15-25 1,2-2 368 160

Таблица №3. Cтоимость СУАПР (рубли РФ с учетом НДС 18%)

Гкал/час

Модификация СУАПР

(два насоса)

Расход воды

из сети, т/час

Цена за штуку,

рубли

СУАПР№1-202 0,5-1 0,04-0,08 271 400
СУАПР№2-202 1-2 0,08-0,16 289 100
СУАПР№3-202 2-3 0,16-0,24 368 160
СУАПР№4-202 3-5 0,24-0,4 379 960
СУАПР№5-202 5-10 0,4-0,8 414 180
СУАПР№6-202 10-15 0,8-1,2 446 040
СУАПР№7-202 15-25 1,2-2 486 160

При заказе СУАПР от 2-х штук возможно предоставление скидок до 15 % и работа по договору с частичной отсрочкой платежа.

Срок отгрузки СУАПР – 4 недели
Примерная стоимость доставки одного СУАПР до города Таганрог – 4 000 рублей
Гарантийный срок на СУАПР – 18 месяцев с даты отгрузки
Экономическая эффективность применения СУАПР.
Опыт внедрения СУАПР на жилых и общественных зданиях говорит о том, что теплопотребление при установке СУАПР снижается:
— административные и общественные здания на 23 % – 30 %;
— жилые здания на 18 % — 25 %.

Рассчитать экономический эффект от применения СУАПР для конкретного здания можно с помощью счетчика, размещенного на сайте www.суапр.рф

  1. Конкурентные преимущества СУАПР

— Блочное исполнение, малые размеры и вес, что обеспечивает легкость монтажа и обслуживания. СУАПР свободно заносится в любой дверной проем в собранном состоянии и может быть размещен в любом подвале.
— Геометрические размеры и нагрузки совпадают с аналогичными параметрами нерегулируемых элеваторов, что позволяет производить монтаж без сварочных работ.
— При монтаже СУАПР требуется кратковременное (не более 4 часов) отключение здания от системы теплоснабжения, что позволяет производить работы в отопительный период.
— СУАПР поставляется со всеми необходимыми настройками под конкретный объект. В случае необходимости СУАПР легко перенастраивается под требуемый температурный график. Для монтажа и эксплуатации СУАПР не требуются высокопрофессиональные специалисты .
— Низкая стоимость СУАПР и минимальные затраты на его внедрение обеспечивают данному изделию самый быстрый срок окупаемости.

фирменном магазине .

Автоматическое регулирование потребления тепловой энергии позволяет создать комфортный тепловой режим при более качественном и точном регулировании. Автоматическое регулирование может осуществляться как на тепловом вводе в дом, так и индивидуально в каждой квартире.

Основной принцип автоматических систем заключается в регулировании расхода по измеряемой температуре. При регулировании на тепловом вводе используются измерения температуры наружного воздуха, при регулировании на радиаторах – температура внутри помещения. При увеличении температуры наружного воздуха и температуры внутри помещения расход теплоносителя автоматически пропорционально уменьшается и наоборот увеличивается при снижении температуры внутри помещения и наружного воздуха. За счет снижения величины расхода происходит уменьшение значение потребляемой тепловой энергии.

Регулирование на тепловом вводе производиться следующим образом. На специальный контроллер Рис.2, который является мозгом всей системы, приходит сигнал от датчика температуры наружного воздуха. Далее в контроллере вычисляется необходимое значение температуры теплоносителя Т3в при данной температуре наружного воздуха Тнв. Существует зависимость или график зависимости между температурой наружного воздуха и температурой теплоносителя, которая и программируется в контроллере. Сигнал от датчика фактической температуры теплоносителя Т3 сравнивается с вычисленным значением Т3в и если фактическое значение превышает вычисленное.значение температуры по графику, то регулирующий клапан начинает уменьшать расход до тех пор пока температуры Т3 и Т3в не будут равны.

Понижение температуры воды T3 происходит за счет смешения воды с более низкой температурой из обратного трубопровода в подающий. Расход в системе отопления при этом вне зависимости от положения регулирующего клапана остается постоянным за счет циркуляционного насоса установленного на перемычке между подающим и обратным трубопроводом.

Помимо регулирования по графику температуры в подающем трубопроводе, можно одновременно поддерживать график температуры обратной воды. При таком регулировании обеспечивается заданная зависимость разности температур от температуры наружного воздуха. Дополнительно может быть установлен переход с дневного на ночной режим, т.е. снижение температуры в подающем трубопроводе в ночные часы, но данный режим подходит в основном только для объектов, где ночью отсутствуют люди. В жилых домах должен поддерживаться постоянный тепловой режим.

Индивидуальное автоматическое регулирование на радиаторах достигается при помощи использования радиаторных терморегуляторов. Радиаторный терморегулятор представляет собой регулирующий клапан, устанавливаемый на входе в радиатор по ходу воды. Воздействие на клапан происходит механически при помощи терморегулирующего элемента. Принцип действия терморегулирующего элемента основан на расширении/сжатии газа или жидкости в баллоне терморегулятора при увеличении/снижении температуры внутри помещения. Достаточно установить настройку радиаторного терморегулятора на комфортную температуру, и он автоматически будет поддерживать необходимый расход через радиатор для получения постоянной заданной температуры воздуха в помещении. Диапазон настройки терморегуляторы достаточно велик от 6 до 26 °C. Минимальная настойка предохраняет радиатор от замораживания. Комфортной температурой считается 20 °C при длительном отсутствии людей в помещении её можно уменьшить до 17 °C, а затем обратно вернуть настройку. Нагрев помещения на недостающие три градуса происходит в течение часа. При установке радиаторного терморегулятора вы получаете следующие возможности:

– создание индивидуального комфорта в помещениях, что сохраняет здоровье людей, так как нет колебаний температуры
– исключение «перетопов», не нужно открывать форточки, так как температура в помещении поддерживается постоянной на заданном уровне
– экономия потребляемой тепловой энергии, получаемая за счет уменьшения расхода через отопительные приборы.
Конечно, необходимо сочетать автоматическое регулирование на тепловом вводе с установкой автоматических радиаторных терморегуляторов для получения максимального экономического эффекта при создании комфортных условий в помещениях.

Экономия тепловой энергии

Сейчас все больше людей задумываются о вопросах энергосбережения. И в этом нет ничего удивительного – зачем переплачивать за отопление, когда на этом можно экономить? Самый простой вариант экономия тепловой энергии – установка счетчиков (узлов учета тепловой энергии). Данный способ применяется уже на протяжении 10 лет и позволяет снизить оплату за тепловую энергию на 20-30 %. Практика показала, что в среднем, установка узла учета тепловой энергии для многоквартирного жилого дома окупается в течение одного отопительного сезона. Если вы уже установили узел учета тепловой энергии и ощутили какой эффект это дает – не останавливайтесь. Можно пойти в этом вопросе дальше. Существует несколько способов снижения потребления энергоресурсов, а как следствие сокращение своих затрат.

Основные способы экономии энергии: автоматическое регулирование температуры теплоносителя в системе отопления и сокращение теплопотерь ограждающих конструкции.

Первый способ экономии энергии, получаемый при установке системы автоматического регулирования, объясняется двумя факторами. Во-первых, автоматическое регулирование позволяет поддерживать оптимальную температуру в помещении, исходя из температуры наружного воздуха, сокращая расход теплоносителя из теплосети в периоды резких колебаний температуры. Это происходит за счет повторного использования части теплоносителя в системе отопления здания, так как для обеспечения необходимой температуры требуется гораздо меньшее количество теплоносителя из теплосетей. Этот вариант подходит для жилых, общественных и административных зданий. Во-вторых, для производственных предприятий, благодаря автоматическому регулированию, мы можем устанавливать необходимую нам температуру теплоносителя в то время, когда помещение не используется (в ночное время, праздничные и выходные дни). Таким образом, происходит сокращение расхода тепловой энергии, а, следовательно – экономия тепловой энергии. Утвержденные нормативы потребления тепловой энергии в настоящее время не отражают реального картины потребления теплоносителя зданиями и являются завышенными.

Установка узла учета тепловой позволяет перейти к расчетам за фактическое потребленное количество энергоресурса, а также заняться снижением его потребления.

Регулирование подачи теплоносителя энергоснабжающей организацией осуществляется не в полном объеме, что приводит к явному перерасходу энергоресурса, а как следствие затрат на отопление.

Наличие хорошо работающей системы автоматизации отпуска тепловой энергии непосредственно в здании, а также правильная организация и наладка системы отопления позволяют значительно снизить потребление тепловой энергии для нужд отопления. При подключении системы отопления здания по зависимой схеме (без ЦТП) затраты на отопление можно сократить до 50 % в переходный период, а при подключении системы отопления по независимой схеме (регулирование на ЦТП) затраты можно снизить на 10-15 % в зависимости от качества регулирования на ЦТП. Также устройство автоматизации отпуска тепловой энергии позволит добиться оптимально комфортных условий внутри жилых помещений, улучшив условия проживания жителей.

Актуальность систем автоматического регулирования расхода тепловой энергии

Необходимо отметить, что пароводяное теплоснабжение очень специфично, требует одновременного решения вопросов гидродинамики и теплопередачи; кроме того, тепловая энергия – особенный вид энергии, ее параметры должны контролироваться в обоих направлениях от источника к потребителю и наоборот, поэтому применение систем автоматического регулирования предлагаем рассматривать с учетом технико-экономических приоритетов.

Экономический смысл установки систем автоматического регулирования существует как и без установки приборов учета, так и после установки приборов учета тепловой энергии.

В первом случае система регулирования, регулируя расход тепловой энергии существенно снижает затраты теплоснабжающих организаций в то время как потребители оплачивают тепло по утвержденному тарифу.

Во втором случае потребители оплачивают за фактически потребленное тепло с учетом экономии, которая составляет в среднем от 10% до 30%. Повсеместно устанавливаются общедомовые приборы коммерческого учета тепла. Установка только теплосчетчиков не может уменьшить суммарные затраты на производство и передачу тепловой энергии. Действительно, если теплосчетчики будут установлены всюду, потребители все равно будут оплачивать поставщику тепла все издержки.

Большие резервы экономии имеются в социальной сфере: поликлиники, школы, в общественных, административных зданиях, прежде всего потому, что в них имеются периоды отсутствия людей в отапливаемых помещениях, во время которых возможно задавать заниженные параметры обеспечения теплом и горячей водой без нарушения комфорта в рабочее время. Т.е. при пуско-наладочных работах системы регулирования, например, в школе, возможно сразу заложить экономичный режим потребления тепла этим объектом на период зимних каникул.

В жилых домах неприменимо программное снижение температуры в помещениях. Но имеется возможность раздельного регулирования фасадов одного здания при разных условиях воздействия солнечного освещения и других климатических факторов. Для этого используется двухконтурные регуляторы температуры, в каждый контур которого вводится одинаковая программа регулирования.

Важным фактором энергосбережения для многих объектов является ликвидация осенне-весенних перетопов, когда для целей подготовки горячей воды на объекты подается теплоноситель с заведомо завышенной температурой при положительных температурах наружного воздуха, выше так называемой точки «срезки» температурного графика. В домах, где имеется бойлер для подготовки горячей воды, поскольку в периоды отсутствия разбора горячей воды теплоноситель циркулирует через бойлер-теплообменник напрасно, снижая также его эксплуатационный ресурс, кроме того, изменения параметров теплоисточника очень инерционно распространяются по тепловой сети, что корректируется внутридомовыми регуляторами температуры. По санитарным нормам требуются различные температурные условия в помещениях, а это не всегда реализуется при одинаковой температуре теплоносителя. С учетом всех этих факторов необходимо модернизировать системы теплопотребления с помощью современных систем качественно-количественного регулирования.

В идеальном случае существует эффект от применения систем автоматического регулирования вплоть до каждого отопительного прибора, стояка, калорифера и т.д. Наш более чем многолетний опыт подтверждает эффективность их применения.

Оборудование и его применение

Энергосберегающее оборудование позволяет создавать системы различного назначения и сложности: одно- и двухконтурные, с дополнительными функциями управления насосами или накопления и обработки статистической информации о ходе процесса регулирования. Но за всем этим должен стоять комплексный экономический подход, который включает следующие параметры: учет взаимовлияния объектов и систем теплоснабжения, санитарно-гигиенические требования, комфорт, снижение эксплуатационных издержек, достоверность теплоучета и экономия топливно-энергетических ресурсов. Системы автоматического регулирования включают в себя электронные регуляторы температуры, датчики температуры, электроприводы с импульсным шаговым двигателем, регулирующую и запорно-регулируюшую арматуру. К последней относятся запорно-регулирующие клапаны, смесительные регулирующие клапаны и регулирующие гидроэлеваторы.

Важную роль здесь играют регуляторы температуры, посредством которых осуществляется управление регулирующими звеньями. С 2010 года выпускается регулятор температуры РТ-2010, представляющий собой обновленный и усовершенствованный вариант предшественника РТ-2000А и имеющий дополнительно возможность установки интерфейса RS485; исполнительный механизм для клапанов и элеваторов МЭП-3500, отличающийся от своих предшественников и конкурентов не только конструктивом, но и набором дополнительных функций.

Схема с регулирующим гидроэлеватором очень распространена для объектов, получающих с теплоисточника перегретый теплоноситель. Не допускается применять ее только на объектах с гидравлическими проблемами где перепад давления между подающим и обратным трубопроводом менее 6 метров водяного столба (0,06 МПа). Элеваторы РГ обеспечивают качественное регулирование за счет смещения прямого и обратного теплоносителя. Регулирующий элеватор не требует применения дополнительного насоса, так как одним из элементов его конструкции является струйный насос. Поэтому применение регулирующих гидроэлеваторов, особенно на объектах ЖКХ, снижает монтажные и эксплуатационные расходы и не приводит к нештатным ситуациям при сбоях в электропитании. В аварийных случаях остановка насоса в системе отопления требует неотложных мер, чтобы не допустить замораживания системы. Схема с регулирующим гидроэлеватором лишена этого недостатка и исключаются затраты насоса и на строительно-монтажные работы следовательно значительно ниже.

Для других схем отопления имеется большая гамма запорно-регулирующих клапанов. Если, в соответствии с техническими условиями на объекте установка насоса необходима, то насос может быть установлен на обратном трубопроводе или перемычке. Однако данную схему нельзя применять на теплопунктах, подключенных к ЦТП (график теплоснабжения – 95˚/70˚ С).

Применение запорно-регулирующих клапанов наиболее эффективно в системах автоматического регулирования, допускающих 100%-ное перекрытие подачи теплоносителя. Прежде всего, это – горячее водоснабжение.

Распространены открытые системы ГВС, они сложно поддаются регулировке. По нашему опыту применение двухходовых клапанов не обеспечивает требуемые параметры по температуре горячей воды, обратного теплоносителя и по уровню шумов. Ввиду этого нами предлагаются трехходовые смесительные клапаны КСТ.

На базе энергосберегающего оборудования производим и компактные блочные тепловые пункты, объединяющие в той или иной степени многие схемные решения.

Одним из важнейших направлений, которое в последнее время стало актуальным и востребованным – диспетчеризация объектов регулирования. Так же на базе оборудования предусмотрена возможность реализации подобных систем. Разработаны и широко используются регуляторы температуры РТ-2010, РТ-2000А, которые снабжены интерфейсом RS232 (RS485), по средствам которого имеется возможность удаленного управления систем регулирования.

На сегодняшний день на базе регуляторов уже смонтированы и запущены системы диспетчеризации, включающие кроме регулирования (регуляторы температуры) еще и учет (теплосчетчики).

Разработанные исполнительные механизмы клапанов МЭП-3500 могут снабжаться токовым выходом, дополнительными релейными выходами для определения положения механизма. Это существенно выделяет этот привод на фоне конкурентов. Установка в привода МЭП-3500 интерфейса RS485 позволяет включить их в общую систему диспетчеризации на ряду с регулятором температуры и счетчиком. К реализации подобного проекта уже проявляется интерес со стороны организаций, занимающихся разработкой контроллеров диспетчерского контроля и сбора данных с объектов.

Экономическая эффективность от автоматизации ИТП

При проектировании ИТП кроме требований СНиП проектировщик должен руководствоваться техническими условиями на теплоснабжение объекта с четкими данными о гидравлических параметрах и температурных графиках. Вне зависимости от изготовителя системы автоматического регулирования могут включать комплект регуляторов с датчиками, запорно-регулирующие и смесительные клапаны, насосы, шкафы автоматики и управления, КИП, прочую арматуру. Одним контроллером там, где это необходимо, управляются системы отопления и ГВС.

Рассмотрим применение регуляторов температуры в жилых зданиях. При расчете экономической эффективности применения регулятора температуры отопления с регулирующим гидроэлеватором для 108-квартирного здания экономия составляет 11%, установка оборудования окупается за 0,78 года. В расчете использован только один фактор – перерасход тепла из-за осенне-весенних перетопов. Если второй контур системы регулирования задействован на регулирование тепловой энергии для подогрева горячей воды экономический эффект еще возрастет.

Экономические показатели системы регулирования отопления и ГВС: суммарная экономия составляет более 15%, окупаемость от внедрения системы регулирования – менее 0,5 года.

Расчеты показывают, что для домов с числом квартир 80 и более затраты на внедрение систем автоматического регулирования окупаются менее, чем за 1 год. На объектах, где удельные затраты на энергосберегающее оборудование и его монтаж на 1 Гкал больше срок окупаемости увеличивается, например при числе квартир менее 80 или на небольших объектах социальной сферы. Рассмотрим для примера детский сад. Система автоматического регулирования отоплением включает регулирующий гидроэлеватор и микропроцессорный блок управления им по сигналам с термодатчиков. Окупаемость проекта – 0,94 года. Преимущества данной схемы:

высокая надежность и безаварийность даже при временном пропадании электропитания, т.к. элеватор выполняет и функцию насоса;
– возможность введения гибкого графика регулирования с учетом ночного времени, выходных и праздничных дней на весь отопительный сезон;
– оптимизация температурного комфорта в помещениях благодаря возможности задания предварительного натопа перед рабочим временем;
– обязательный контроль параметров обратного теплоносителя.

Если на аналогичном объекте имеется подготовка горячей воды и установить регулятор расхода на ГВС, то удельные затраты на автоматизацию теплопункта будут ниже: электронный блок используется тот же, добавляется к нему датчик температуры горячей воды и для ГВС дополнительно используется запорно-регулирующий клапан. Экономический эффект возрастает до 30% при окупаемости 0,72 года.

Все технико-экономические расчеты, особенно при внедрении новых проектных решений, мы поверяем с помощью специальных средств мониторинга, данных коммерческого приборного учета.

В заключении хотелось бы отметить, что сбережение топливно-энергетических ресурсов на основе использования систем автоматического программного регулирования теплопотребления реализуемо и экономически оправдано. Этому процессу нет альтернативы.

Приобрести широкий спектр современного оборудования для автоматизации по выгодным ценам можно в нашем фирменном магазине .

Несмотря на морозы, можно увидеть как люди держат открытыми форточки — это говорит о несбалансированности отопительной системы в доме. Отопление работает без учета фактической необходимости: на улице резко потеплело, а батареи остались горячими. Открывая форточки жильцы фактически выкидывают деньги из окна, но что поделаешь, если ТЭЦ не может быстро сменить температуру. Если в доме есть тепловой пункт, то тепло от ТЭЦ будет потребляться по мере необходимости, а соотвественно платить за лишнее не придется.

Система погодного регулирования отопления позволяет экономить до 35% расхода тепловой энергии. Если учесть, что многоквартирный дом (управляющая компания, ЖСК, ТСЖ) платят за отопление в отопительный сезон от двухсот до четырехсот тысяч рублей в месяц, то экономию и комфорт от системы жильцы почувствуют уже через месяц!

Функционирование системы автоматического регулирования теплопотребления
Регулирование производится полностью в автоматическом режиме, при правильном подборе оборудования узел работает независимо от перепада давления на вводе, а благодаря насосной циркуляции теплоноситель достигает крайних стояков и радиаторов с требуемыми параметрами. В административных зданиях возможна организация понижения температуры воздуха в помещениях в ночное время, выходные и праздничные дни, что даст значительную дополнительную экономию.

Компоненты систем регулирования теплопотребления

Контроллер — головной управляющий орган системы автоматизированного регулирования. Он связывает воедино весь комплекс приборов и устройств узла: в него стекаются данные о параметрах в системе и производится управление всеми исполнительными механизмами.
Регулирующий клапан — основной рабочий орган узла регулирования. Может быть двух- или трехходовым. Его задача регулировать расход теплоносителя в подающем трубопроводе в зависимости от температуры наружного воздуха.
Циркуляционный насос — обеспечивает циркуляцию теплоносителя в системе отопления, благодаря чему, даже удаленные стояки имеют достаточное снабжение теплом. На узлах рекомендуется установка сдвоенных насосов, обеспечивающих безотказную работу всего комплекса.
Датчик температуры измерительный прибор, предназначенный для измерения температуры теплоносителя в системе отопления и наружного воздуха. Функционирование основано на изменении сопротивления материалов чувствительного элемента датчика в зависимости от температуры среды.

Назначение системы автоматического регулирования теплопотребления

— создание комфортных условий для проживания и работы в помещениях здания, за счет поддержания заданного температурного режима по датчикам, размещенным в контрольных помещениях зданий;
— экономия тепловой энергии за счет понижения температуры теплоносителя в ночные часы, в выходные и праздничные дни;
— экономия тепловой энергии за счет устранения вынужденных «перетопов» (подачи на объект теплоносителя с завышенной температурой теплоносителя) в переходные и межсезонные периоды;
— регулирование параметров теплоносителя в зависимости от температуры наружного воздуха с минимальной инерцией. Гибкий температурный график возможен только для индивидуальных теплопунктов, температурный график тепловых сетей не предусматривает быстрого реагирования на изменение погодных условий (это связано со спецификой работы энергетического оборудования);
— регулирование температуры теплоносителя в обратном трубопроводе теплосети для исключения применения штрафных санкций со стороны энергоснабжающих организаций за превышение данной температуры;
— экономия за счет сокращение численности обслуживающего персонала;

Как это работает?

Датчик наружного воздуха (выведенный на теневую сторону улицы) измеряет уличную температуру. Два датчика на подающем и обратном трубопроводе измеряют температуру теплосети. Логический программируемый контроллер вычисляет необходимую дельту и управляя клапаном (КЗР) регулирует скорость потока теплоносителя. С целью защиты от полного перекрывания в клапане предусмотрена защита. Для предотвращения застоя стояков (попадания воздуха) насос обеспечивает циркуляцию теплоносителя в системе, через обратный клапан. Узел погодного регулирования также оборудован автоматическим воздухоотводчиком. Если теплосеть не имеет необходимого перепада (что бывает крайне редко), то проблема легко устраняется установкой автоматического балансировочного клапана.

Система имеет полнопроходной байпас и на 100% гарантирует отсутствие перебоев с теплоснабжением в зимнее время.

В настоящие время доля оплаты за ОТОПЛЕНИЕ, наибольшая строчка в квитанции за коммунальные платежи. В связи с этим у многих собственников появляется заинтересованность в возможности снижения этих расходов.

Одним из способов для этого, оснастить систему отопления дома автоматическим ИТП (погодным регулятором).
Система погодного регулирования отопления оправдывает себя только в случае, если в доме уже установлен теплосчетчик (узел учета тепловой энергии).

Энергетикам сложно соблюдать температурный график (температуры на подающем и обратном трубопроводах отопления в зависимости от температуры уличного воздуха). Их цель дать как можно больше тепла для потребителей, для того чтобы было достаточно температуры всем домам расположенным в районе вокруг ЦТП (ближайшим, и удаленным). Так же на ЦТП параметры теплоносителя не меняться в взаимности от времени суток (солнечный день, ночь, день недели и т.д.)

Система автоматического регулирования тепла

После оснащения автоматикой ИТП, каждый дом индивидуально сможет регулировать параметры теплоносителя внутреннего контура отопления (температуры батарей), согласно заданным параметрам в зависимом от внешней температуры воздухе. Так же постоянно на достаточном уровне поддерживать циркуляцию теплоносителя внутри дома, во время низкого перепада давления предоставляемого энергетиками. (Пример: Осень 2013, жалобы на холодные батареи из за перепада менее 1 м между подачей и обраткой на элеваторах ИТП).

Автоматический ИТП позволяет экономить до 35% (и более) Гкал, а значит и денег. Если учесть, что многоквартирный дом платят за отопление в отопительный сезон нескольких миллионов рублей, то экономия даже на 25% окупает всю систему от одного сезона! А с увеличением тарифа (цены за Гкал) время окупаемости уменьшается.

Принцип работы автоматики

Автоматический ИТП (Узел погодного регулирования) состоит из клапана регулирующего с электроприводом, насоса циркуляции, обратного клапана, датчиков температуры, электрического шкафа управления (с программным контроллером), запорно-регулирующий арматуры, фильтров, и др. Характеристики комплектующих для погодного регулятора подбираются опытным проектировщиком, исходя из конкретного объекта. Здесь учитываются тепловые нагрузки, скорость потока, гидравлическое сопротивление, перепад и многое другое.

Наша компания имеет большой опыт в проектирование, в монтаже и наладке данных устройств.

Система погодного регулирования работает следующим образом. Датчик наружного воздуха (выведенный на теневую сторону улицы) измеряет уличную температуру. Два датчика на подающем и обратном трубопроводе измеряют температуру теплосети. Логический программируемый контроллер вычисляет необходимую дельту и управляя клапаном регулирует скорость потока теплоносителя. Если теплосеть не имеет необходимого перепада, то проблема устраняется установкой автоматического балансировочного клапана.

Примеры узла автоматики

Статьи по теме: