Умягчение воды. Способы умягчения воды: выбор лучшего варианта Определение качества воды после стадии умягчения

Бытует распространенное мнение, что воду из глубинных водоносных слоев можно употреблять в пищу без предварительной подготовки. Действительно, вода из них гораздо чище, чем из верховодки, однако, и в ней есть примеси, наличие которых может негативно отразиться на здоровье человека и работе оборудования. Чтобы подробно разобраться в вопросе, обратимся к специалистам отдела систем водоочистки компании БИИКС .

Вода - это прекрасный растворитель. Находясь в постоянном контакте с горными породами, она насыщается веществами, из которых эти породы состоят. Со временем накапливается огромное количество соединений. Состав воды зависит от типа породы, в которой проходит водоносный слой. Для Москвы и Подмосковья характерно высокое содержание карбонатных солей жесткости и соединений железа.

Длительное употребление в пищу воды повышенной жесткости приводит к отложениям конкрементов в почках (камней), при контакте кожа и волосы становятся сухими. Во время нагрева соединения выпадают в осадок, образуя твердый, плохо удаляемый налет. Приходят в негодность ТЭНы, засоряются трубы и шланги, повышается скорость износа подвижных частей оборудования.

Превышение жесткости может быть определено:

  • визуально : образование налета на сантехнике и нагревательных элементах (в чайнике, на ТЭНах стиральных и посудомоечных машин, бойлеров);
  • на вкус : в сравнении с бутилированной водой известной жесткости;
  • по пенообразованию : в жесткой воде образуется меньше пены и расход моющих средств выше;
  • в лаборатории .

Умягчение воды - это снижение концентрации солей жесткости и приведение этих показателей к рекомендованным значениям.

Нормы жесткости воды

В зависимости от концентрации солей жесткости, воду делят на:

  • мягкую - содержание солей не более 2 мг-экв/л;
  • нормальную - содержание солей в пределах 2 - 4 мг-экв/л;
  • жесткую - содержание солей в пределах 4 - 6 мг-экв/л;
  • высокой жесткости - содержание солей выше 6 мг-экв/л.

Российским стандартом, регламентирующим качество питьевой воды, установлено предельное значение концентрации солей жесткости на уровне 7,0 мг-экв/л. В то время, как ВОЗ устанавливает этот показатель на уровне 2,5 мг-экв/л, а в ЕЭС принят норматив 2,9 мг-экв/л. Таким образом, в качестве питьевой водопроводной воды в России допустима подача очень жесткой воды, с двукратным превышением рекомендаций ВОЗ.

Способы умягчения воды

Термический

Другими словами - кипячение. При повышении температуры, растворимый гидрокарбонат кальция (наиболее распространенное соединение, вызывающее жесткость) распадается на нерастворимый карбонат кальция и углекислый газ. Нерастворимая часть выпадает в осадок, газ улетучивается. Частично при кипячении уменьшается концентрация и сульфата кальция. Термический способ самый доступный в бытовых условиях, но не самый удобный и имеет низкую производительность. Кроме того, он не подходит для соединений магния.

Мембранный

Для умягчения воды таким способом используются молекулярные мембраны, которые пропускают только частицы воды, удаляя большую часть примесей (до 98%) . Так действуют фильтры обратного осмоса.

Не нужно пить загрязненную воду ради некоторых якобы полезных солей, которые в ней тоже содержатся. Намного лучше питать свой организм теми же самыми веществами, но находящимися в обычных продуктах. Собственно, человечество всю свою жизнь и берет их именно в хлебе, молоке, мясе, рыбе, овощах и фруктах. Например, в стакане молока одного лишь кальция в сотни раз больше, чем в стакане водопроводной. В некоторых случаях, для подготовки питьевой воды таким способом устанавливается минерализатор.

Химический (реагентный)

Суть способа - превратить растворимые соединения в нерастворимые. Для этого используются различные реактивы в зависимости от преобладания в воде солей того или иного типа. Для солей карбонатного типа используется известь, соединения натрия, сода и синтетические соединения, например, тринатрийфосфат. В итоге вода умягчается, но из-за присутствия реагентов в пищу употреблять ее нельзя.

Магнитный

На воду воздействуют путем наведения постоянного магнитного поля. Прохождение через магнитное поле меняет структуру солей жесткости. Молекулы перестают соединяться при нагревании и не образуют осадок, а также разрыхляют слой уже имеющейся накипи, которая растворяется в воде. Такой метод не снижает концентрацию солей, а препятствует их отложению в виде осадка. Для бытовых целей такая вода подходит хорошо: трубы, насосное оборудование и нагревательные элементы прослужат дольше. Эффективно умягчать воду можно с помощью магнитов можно только в небольших объемах и скорости потока не выше 0,5 м/с. С помощью магнитного умягчителя также снижается содержание железа.

Электромагнитный

Является усовершенствованной версией магнитного с той разницей, что избыток солей не только теряет способность выпадать в виде осадка, но и удаляется через отстойник в канализацию.

Ионообменный

Суть метода заключается в замещении ионов кальция и магния на ионы натрия, соединения которого растворимы и не оказывают негативного влияния на здоровье и оборудование.

Современные системы очистки питьевой воды нередко сочетают несколько способов, которые зависят от анализа воды из скважины. Определить, какой тип умягчителя нужен в вашей ситуации, помогут специалисты по водоочистке. Для артезианских скважин на территории Подмосковья, где преобладают карбонаты, рекомендуется установка умягчителей воды ионообменного типа.

Конструктивно устройство представляет собой пластиковый баллон, внутрь которого в виде гранул засыпается полимерная ионообменная смола, способная отдавать ионы натрия и поглощать ионы кальция и магния. Вода, поступающая в баллон, медленно проходит сквозь смолу на которой происходит реакция замещения. Когда концентрация ионов натрия в смоле падает, необходимо произвести процесс промывки и регенерации. С баллоном для этих целей соединен солевой бачок, откуда поступает раствор хлорида натрия. Процесс контролируется автоматическим блоком управления. Во время промывки подача умягченной воды прекращается, поэтому регенерация программируется на ночное время. Если разбор воды происходит непрерывно, то рекомендуется устанавливать два баллона и запускать регенерацию поочередно. Периодически, в среднем через 3-4 года, смолу необходимо менять, так как количество циклов её восстановления ограничено. Производительность системы зависит от объема загрузки в баллоне.

Статья подготовлена при участии специалистов отдела систем водоочистки сайта

Статья № 118

Процессы для умягчения воды


Процессы для умягчения воды


Большое количество информации порождает бессмыслицу и запутанность. Проблема, вместо того, чтобы быть решенной перерастает в дилемму. Это утверждение особенно справедливо для ситуации, сложившейся с жесткой водой и в тот момент, когда нужно определить процессы для умягчения воды . Что делать: проводить удаление накипи в котле или жесткая вода все-таки может быть использована? Наверное, ответ будет положительным и средство от накипи применять нужно. Ведь доказано, что известковый налет и отложения часто наносят сильный вред санитарной и бытовой технике.
С другой стороны есть информация о том, что, мол, даже вода из родников потому и вкусная, что там содержатся ионы кальция и магния (именно они, как вы помните, являются главной причиной образования накипи). Также многие врачи заявляют, что в нашей стране у каждого человека наблюдается недостаток кальция и магния в организме, что пагубно для здоровья и ведет к нарушениям в костной системе. Известно также, что именно вода, насыщенная «накипными» солями, является основным источником, из которого можно получить необходимые человеку вещества. Но, при этом, процессы для умягчения воды всё же необходимы.
С одной стороны умягчение воды будто бы не требуется, а с другой – как же тогда уберечь бытовую технику? Между тем, примеров удивительных свойств применения мягкой воды огромное множество: только из мягкой воды готовят чешское пиво лучших сортов, а чай и кофе становятся более ароматными и вкусными. Если вы были в турецком отеле, то наверняка помните, насколько ваша кожа была приятна на ощупь после посещения душа. Это происходит потому, что там используется умягчитель воды для котла и труб .
Перейдем от теории к практике. В России один человек в среднем расходует на себя около 300-400 литров воды, из которых основная часть приходится на бытовые нужды, и только около 5-10 литров мы тратим на приготовление пищи. Что касается питья, то здесь цифры еще меньше – мы выпиваем всего 1-2 литра.
В связи с этим напрашивается будто бы единственное правильное решение – для питьевой воды приобретать жесткую воду (покупать в бутылках), а для техники использовать умягчитель воды. Пожалуй, это самое лучший способ, который позволит избежать постоянных технических поломок, облегчит и разгрузит систему водоснабжения от заторов и позволит сэкономить на моющих средствах. Но сделать это не так легко, как кажется, особенно в нашей стране. Процессы для умягчения воды бывают разными.
Конечно, коммунальные службы делают все возможное для того, чтобы предварительно очистить воду, но, по сути, от них мало что зависит, их умягчение воды лишь поверхностное. Жесткая вода поступает в квартиры граждан практически напрямую, не проходя необходимой очистки. Ни одно средство от накипи при этом не используется.
Совсем другая ситуация сложилась в зарубежных странах, где процесс поступления воды и очистка от накипи очень хорошо организованы. На Западе водоподготовка продумана до мелочей, ведь там действительно очищают воду, но далеко не всю. Разводка коммуникаций проектируется таким способом, что мягкая вода подается лишь в систему горячего водоснабжения. Это позволяет увеличить срок службы котла и минимизирует производимые затраты.
Очистка от накипи котла и теплообменника , этот процесс умягчения воды происходит благодаря тому, что в котловый контур поступает умягченная вода. При этом вода, находящаяся в системе холодного водоснабжения, не подвергается обработке – жесткая вода подается в первозданном виде. Но здесь есть одна хитрость. Дело в том, что поступающая горячая вода смешивается с холодной и дает на выходе 1,5-2 мг-экв/л. Однако такое средство от накипи используется не всегда. К примеру, для воды в сливных бочках унитаза, а также воды, предназначенной для полива газонов, обработка не применяется.
Итак, с теорией и заграничной практикой по проведению процессов для умягчения воды и комплекса таких действий, как водоподготовка, мы знакомы. Что же делать нам, в наших российских условиях для того, чтобы как можно более эффективно и без особых затрат добиться, чтобы происходило естественное удаление накипи и снижение жёсткости воды ?

Сочетание процессов для умягчения воды

Для этого, в первую очередь, желательно быть в курсе того, какова жесткость именно вашей воды. Если хотите узнать, то сделать это так просто не получится – придется отнести анализ воды на пробу в специальную лабораторию, где определяют пригодность воды. Существует классификация, согласно которой, вода с жесткостью 1,5-3 мг-экв/л считается мягкой, с показателями в 3-6 мг-экв/л – умеренно жесткой. Действительно жесткая вода содержит от 6 до 9 мг-экв/л катионов солей. В соответствии с ГОСТ – вода, которая поступает из крана, должна содержать 7 мг-экв/л катионов солей. Сочетание процессов для умягчения воды позволит максимально снизить жёсткость.
Следует заметить, что этот параметр – 7 мг-экв/л выводился без учета потребностей людей, исходя из времени выхода из строя труб. Трубопроводная система изнашивается гораздо быстрее при воде с жесткостью выше 7 мг-экв/л. Получается, что все существующие нормы были введены, во избежание зарастания известью и предупреждения скорого вывода трубопровода из строя.
Однако чтобы не мучить себя, нужен ли вам умягчитель воды, можно определить уровень содержания солей на глаз. Однако, это не так эффективно, как сочетание процессов для умягчения воды, например с разными средствами от накипи. От жесткой воды на душевом рассеивателе остается известковый налет, а кожа после водных процедур часто сохнет, шелушится, становясь при этом грубой. Количество накипи, которая остается после кипячения воды в чайнике, ни о чем не говорит, поскольку она остается даже при использовании умягченной воды.
Возвращаемся к поставленной проблеме: как же решить ее наиболее эффективным образом – так, чтобы сэкономить финансы и уберечь технику?
На данный момент существует множество способов по проведению такой процедуры, как водоподготовка. Самым простым из них всегда было и остается обычное кипячение. Такое умягчение воды эффективно при карбонатной жесткости (временная жесткость). Гидрокарбонат при термическом воздействии выпадает в осадок, выделяется углекислый газ. Данный метод используют не только в быту, но и в промышленности. Он особенно результативен при наличии дарового тепла.
Помимо этого, иногда используются реагентные методы. В процессе умягчения воды и воздействия химвеществ соли кальция переводятся в нерастворимые соединения, которые впоследствии образуют осадок. Сфера применения – станции муниципальной подготовки воды. Удаление накипи происходит при добавлении гашеной извести и соды. Это устраняет мутные взвеси, а также способствует умягчению воды.
Однако, сочетание процессов для умягчения воды и воздействие реагентами имеет весомые недостатки, которые не позволяют использовать этот метод в домашних условиях. Во-первых, нужна точная дозировка веществ. Во-вторых, их надо где-то хранить. В-третьих, очистка от накипи оставляет большое количество твердых отходов.
В древности воду смягчали, добавляя в нее печную золу. Не менее эффективный способ – добавление соды, в пропорциях 1-2 чайные ложки на ведро воды. Это, конечно, решает проблему, но не в таких масштабах, в каких нам нужно. Плюс ко всему, это требует времени и наличия необходимых элементов. Мы же выяснили, что человек потребляет около 300 литров воды в день – а это много для того, чтобы каждый раз добавлять в воду соду, кипятить ее или смешивать с золой.
Следующими способами являются электродиализ и обратный осмос. Методы используются при обессоливании, смягчении и подготовке воды к питью. Довольно широко используется способ умягчения воды, основанный на ионообменных смолах, в ходе которого происходит обмен «жестких» ионов на ионы натрия смолы. Регенерация смолы, полученной в ходе ионного обмена, осуществляется при использовании раствора поваренной соли. Импортные смягчители изготовлены в виде напорного бака, имеющего высокую прочность. Ионообменная смола находится внутри такого баллона.
Сейчас существует множество различного оборудования, предназначенного для умягчения воды. Однако наиболее мобильным, эффективным и практически безотходным являются электромагнитные умягчители. По сравнению с теми же процессами для умягчения воды и осмосными и ионообменными установками, они гораздо дешевле, компактнее и не создают никакого шума, а также не имеют побочных эффектов. Важный параметр – это время очистки и объем воды, который может быть очищен за определенный промежуток времени. По сравнению с существующими аналогами, электромагнитный умягчитель и здесь показывает самые лучшие результаты. Сочетание процесса для умягчения воды с другими процессами, даёт наилучший результат.

Жёсткость воды - совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния. Вода с большим содержанием таких солей называется жёсткой, с малым содержанием - мягкой. Различают временную жёсткость, образованную гидрокарбонатами и постоянную жёсткость, вызванную присутствием других солей.

Известно, что важнейшей характеристикой пресной воды является её жесткость. Под жесткостью понимают количество миллиграмм-эквивалентов ионов кальция или магния в 1 л воды. 1 мг÷экв/л жесткости соответствует содержанию 20,04 мг Са2+ или 12,16 мг Mg2+. По степени жесткости питьевую воду делят на очень мягкую (0–1,5 мг÷экв/л), мягкую (1,5–3 мг÷экв/л), средней жесткости (3–6 мг÷экв/л), жесткую (6–9 мг÷экв/л) и очень жесткую (более 9 мг÷экв/л). Наилучшие вкусовые свойства имеет вода с жесткостью 1,6–3,0 мг÷экв/л, а, согласно СанПиН 2.1.4.1116–02, физиологически полноценная вода должна содержать солей жесткости на уровне 1,5–7 мг÷экв/л. Однако при жесткости воды выше 4,5 мг÷экв/л происходит интенсивное накопление осадка в системе водоснабжения и на сантехнике, нарушается работа бытовых приборов. Обычно умягчение проводят до остаточной жесткости 1,0–1,5 мг÷экв/л, что соответствует зарубежным нормативам по эксплуатации бытовой техники. Вода, имеющая жесткость ниже 0,5 мг÷экв/л является коррозионно-активной по отношению к трубам и котлам, способна вымывать отложения в трубах, накапливающиеся при долгом застаивании воды в системе водоснабжения. Это влечет за собой появление неприятных запаха и вкуса воды.

осуществляют методами: термическим, основанным на нагревании воды, её дистилляции или вымораживании; реагентными, при которых находящиеся в воде ионы Са (II) и Mg (II) связывают различными реагентами в практически нерастворимые соединения; ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na (I) или Н (I) на ионы Са (II) и Mg (II), содержащиеся в воде; диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения определяется качеством воды, необходимой глубиной умягчения и технико-экономическими соображениями, представленными в таблице снизу.

натрий-катионирование - процесс извлечения из воды ионов жесткости - кальция и магния и замена их на ионы натрия.
Кальций и магний составляют жесткость воды, следовательно, после их извлечения вода умягчается.
Ионы натрия находятся непосредственно в смоле (засыпке). В процессе работы установки происходит обмен ионами, натрий поступает в воду, а кальций и магний - в смолу. По истечении некоторого времени смолу необходимо регенерировать, т.е. восстановить ее свойства. Для этого через нее пропускают раствор поваренной соли, и происходит обратный процесс - натрий насыщает смолу, а кальций и магний поступают в раствор, который после сливается.

При пропуске воды сверху вниз через слой катионита происходит её умягчение, заканчивающееся на некоторой глубине. Слой катионита, умягчающий воду, называют работающим слоем или зоной умягчения. При дальнейшем фильтровании воды верхние слои катионита истощаются и теряют обменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са+2 и Мg+2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита. Рабочую обменную емкость фильтра Ер г÷экв/ м3, можно выразить так: Ер = QЖи; Ер = ер Vк.

Объем загруженного в фильтр катионита в набухшем состоянии Vк = аhк.

Формула для определения рабочей обменной емкости катионита, г÷экв/ м3: ер = QЖи /аhк; где Жи - жесткость исходной воды, г÷экв/ м3; Q - количество умягченной воды, м3; а - площадь катионитового фильтра, м2; hк - высота слоя катионита, м.Обозначив скорость фильтрования воды в катионитовом фильтре vк, количество умягченной воды можно найти по формуле: Q = vк aTk = ераhк /Жи; откуда длительность работы катионитового фильтра (межрегенерационный период) находим по формуле: Tk = ерhк /vк Жи.

По исчерпании рабочей обменной способности катионита его подвергают регенерации, т.е. восстановлению обменной емкости истощенного ионообменника путем пропуска раствора поваренной соли.

Ионообменные смолы нашли широкое применение во всем мире в устройствах по водоочистке. Это мелкие шарики из полимерных материалов, насыщенных ионами, способные изымть из воды различные ионы, взамен отдавая свои; их для удобства назвали "ионообменными смолами", хотя правильное научное название их - "иониты". По структуре иониты подразделяются на гелевые способные к ионообмену только в набухшем состоянии, макропористые и промежуточной структуры. Если иониты обменивают анионы - это аниониты, если катионы - катиониты.

Аниониты классифицируются как сильноосновные (обмен анионов происходит при любых значениях рН), слабоосновные (обмен анионов из кислот - рН 1-6), смешанной активности. Катионоты бывают сильной кислотности, способные к ионообмену при любых значениях рН, и слабокислотные при рН больше 7.

Приведем характеристики некоторых катионоообменников. Среди сильнокислотных катионообменников отечественного производства, разрешенных к применению для хозяйственно-питьевого водоснабжения, можно выделить КУ-2–8чС. Получают его сульфированием гранульного сополимера стирола с 8% дивинилбензола. КУ–2–8чС по структуре и свойствам близок к следующим зарубежным сульфокатионитам особой степени чистоты: амберлайту IRN-77 (США), зеролиту 325 NG (Англия), дауэксу HCR-S-Н (США), дуолайту ARC-351 (Франция), вофатиту RH (Германия). По внешнему виду - сферические зерна от желтого до коричневого цвета, размером 0,4–1,25 мм, удельный объем не более 2,7 см3/г. Полная статическая обменная емкость не менее 1,8 г÷экв/л, мин, динамическая обменная емкость с полной регенерацией не менее 1,6 г÷экв/л.

В настоящее время нашли широкое применение сильнокислотные катиониты фирмы Пьюролайт: C100, С100Е, С120Е (аналоги отечественных смол КУ-2–8, КУ–2–8чС). Применяется ионообменная смола фирмы Пьюролайт С100Е Аg (обменная емкость 1,9 г÷экв/л, насыпная масса 800–840 г/л), представляющая собой серебросодержащий катионит для водоумягчения, обладающий бактерицидным действием. Существует отечественный аналог КУ-23С - макропористый катионит бактерицидного действия (статическая обменная емкость 1,25 г÷экв/л, насыпная масса 830–930 г/л).

Применяется для умягчения питьевой воды как в промышленности, так и в быту катионит Пьюрофайн С100ЕF - он имеет ряд преимуществ по сравнению с общепринятыми смолами для водоумягчения. Обладает намного большей рабочей емкостью при обычных скоростях потока, повышенной рабочей емкостью при высоких скоростях потока, при меняющемся и прерывающемся потоке. Минимальная общая обменная емкость 2,0 г÷экв/л. Особенность катионита С100ЕF состоит в том, что он требует меньшего объема и количества регенеранта (NaCl).

Применяется сильнокислотный катионит IONAС/С 249 для умягчения воды бытового и муниципального применения. Обменная емкость 1,9 г÷экв/л.

Умягчение воды натрий-катионитовым методом на указанных смолах (жесткость воды снижается при одноступенчатом натрий-катионировании до 0,05...0,1, при двухступенчатом - до 0,01 мг÷экв/л) описывается следующими реакциями обмена:
(cм. печатную версию)

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате (скорость фильтрования в пределах 10...25 м/ч); взрыхление слоя катионита восходящим потоком умягченной воды, отработанного регенерата или отмывных вод (интенсивность потока 3...4 л/(см2); спуска водяной подушки во избежание разбавления регенерирующего раствора; регенерации катионита посредством фильтрования соответствующего раствора (скорость фильтрования 8...10 м/ч). На регенерацию обычно затрачивают около 2ч, из них на взрыхление - 10...15, на фильтрование регенерирующего раствора - 25...40, на отмывку - 30...60 мин.

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное

учреждение «Юго-Западный государственный университет»

Кафедра общей и неорганической химии

УТВЕРЖДАЮ Первый проректор – проректор по учебной работе

Е.А. Кудряшов «___»____________2012 г.

ЖЁСТКОСТЬ ВОДЫ И МЕТОДЫ ЕЁ УМЯГЧЕНИЯ

Методические указания к самостоятельной работе по дисциплине ""Химия"" для студентов нехимических специальностей

УДК 546 Составители: И. В. Савенкова, Ф.Ф. Ниязи

Рецензент Кандидат химических наук, доцент В. С. Мальцева

Жёсткость воды и методы её умягчения: Методические указания к самостоятельной работе по дисциплине ""Химия"" для студентов нехимических специальностей / Юго-Зап. гос. ун-т; Сост.: И. В. Савенкова, Ф.Ф. Ниязи Курск, 2012. 18с.

Излагаются методические материалы по оценке жёсткости воды и методам её умягчения, представлены лабораторная работа по данной теме и индивидуальные задания для студентов.

Предназначены для студентов нехимических специальностей.

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ

1. Жёсткость воды и причины её образования. Единицы измерения жёсткости.

2. Виды жёсткости: временная, постоянная, общая, карбонатная и некарбонатная. Какими ионами они обусловлены?

3. Влияние жёсткости на рН воды.

4. Негативные последствия использования жёсткой воды в промышленности.

5. Основные методы умягчения промышленных вод. Чем руководствуются при их выборе?

6. Термический метод умягчения воды. Его достоинства и недостатки.

7. Реагентные методы, используемые для умягчения воды. Какие химические процессы происходят при умягчении воды методом: а) известкования; б) фосфатирования; в) содовым; г) добавлением гидроксида натрия?

8. Умягчение воды ионнообменным методом.

9. Ионообменная емкость катионита и анионита. В каких единицах она выражается? От каких факторов зависит?

10. Почему для регенерации катионита его промывают раствором хлористого натрия, а затем водой? Можно ли регенерировать катионит, промывая его раствором хлористого магния?

Библиографический список

1. Коровин Н.В. Общая химия. М.: Высш. шк., 2007 г.

2. Задачи и упражнения по общей химии/ Под ред. Н.В. Коровина. М.: Высш. шк., 2004 г.

3. Глинка Н.Л. Задачи и упражнения по общей химии. М.: Интеграл-прес, 2002 г.

4. Ахметов Н.С. Общая и неорганическая химия. М.: Высш. шк.,

Природная вода является сложной многокомпонентной системой, в которой содержатся в растворенном виде различные органические и неорганические соединения.

1) Главнейшие ионы.

Катионы: Na+ , Ca2+ , Mg2+ , K+ (реже Fe2+ , Fe3+ , Mn2+ ); Анионы: HCO3 - , SO4 2- , Cl- , CO3 2- (реже HSiO3 - , SO3 2- , S2 O3 2- ).

2) Растворенные газы.

В воде чаще всего растворены: углекислый газ, кислород, азот, сероводород, метан и др.

3) Биогенные вещества.

К биогенным веществам относятся те соединения, которые возникают в связи с жизнедеятельностью организмов. В их состав входят различные формы азота (аммиачный, нитритный, нитратный), фосфора, кремния, железа.

4) Микроэлементы.

К ним относятся элементы, которые содержатся в воде в количествах меньших 10-3 %.

5) Органические вещества.

Это могут быть различного рода растительные и животные организмы, микроорганизмы и продукты их взаимодействия с окружающей средой.

Природные воды сильно различаются по общему содержанию растворенных солей и по относительному содержанию различных ионов. Это различие может существенно влиять на свойства воды и,

следовательно, на применение ее в различных областях. Специфические свойства воде придают ионы Ca2+ и Mg2+ ,

присутствие которых определяют жесткость воды .

Жесткость воды – один из технологических показателей, принятых для характеристики состава и качества природных вод,

который характеризуется содержанием числа миллимолей эквивалентов ионов Са2+ и Мg2+ в 1 л воды. Один миллиэквивалент жесткости отвечает содержанию в воде 20,04 мг/л Са2+ или 12,16мг/л Mg2+ , что соответствует значению эквивалентной массы этих ионов.

Эти ионы появляются в природных водах в результате

взаимодействия с известняками или в результате растворения гипса. CaCO3 + H2 O + CO2 = Ca2+ + 2HCO3 -

Жёсткость природных вод колеблется в широких пределах. Вода, жёсткость которой менее 4 мэкв/л ионов Са2+ и Мg2+ , характеризуется как мягкая, от 4 до 8 – умеренно жёсткая , от 8 до 12

– жёсткая и более 12 мэкв/л – очень жёсткая .

Например, наиболее мягкой является вода атмосферных осадков (0,07-0,1мэкв/л), а жесткость океанской воды составляет 130 мэкв/л.

Различают несколько видов жёсткости: общую, временную, постоянную, карбонатную и некарбонатную.

Общей жёсткостью называется суммарная концентрация ионов Ca2+ , Mg2+ в воде, выраженная в мэкв/л.

Постоянная жёсткость - часть общей жёсткости, остающаяся после кипячения воды при атмосферном давлении в течение определённого времени.

Временная жёсткость – часть общей жёсткости, удаляющаяся кипячением воды при атмосферном давлении в течение определённого времени. Она равна разности между общей и постоянной жёсткостью.

Карбонатная жёсткость – часть общей жёсткости,

эквивалентная концентрации гидрокарбонатов кальция и магния. Некарбонатная жёсткость - часть общей жёсткости, равная

разности между общей и карбонатной жёсткостью.

Пример 1. В 5 м 3 воды содержится 250 г ионов кальция и 135 г ионов магния. Определить общую жесткость воды.

Решение . Найдем содержание ионов кальция и магния (в мг/л) в

250 1000 / 5 1000 = 50 (мг/л) ионов Са2+

и 135 1000 / 5 1000 = 27 (мг/л) ионов Mg 2+ .

1 мэкв жесткости отвечает содержанию 20,04 мг/л ионов. Са2+ или 12,16 мг/л ионов Мg2+ ; следовательно,

Ж = 50/20,04 + 27/12,16 = 4,715 (мэкв/л).

Ответ : вода умеренно жесткая.

Пример 2 . Вычислить карбонатную жёсткость воды, зная, что на титрование 100мл этой воды, содержащей гидрокарбонат кальция,

потребовалось 6,25мл, 0,08 н раствора НС1. Привести уравнение соответствующей реакции.

Решение : Задачу решаем используя закон эквивалентов для растворов.

Вычислим нормальность раствора гидрокарбоната кальция: N1 = 6,25 0,08 ⁄ 100 = 0,005 н

Следовательно, в 1 л воды содержится 0,005 1000 = 5 мэкв гидрокарбоната кальция.

Ответ: Ж=5мэкв/л

Ионы Ca2+ и Mg2+ не представляют опасности, но значительное их содержание в воде приводит к перерасходу мыла, ухудшению вкуса продуктов и т.д. При нагревании и, особенно при испарении воды соли этих металлов образуют слой накипи, снижающий коэффициенты теплопередачи в охлаждающих и нагревающих системах, что является крайне нежелательным.

Использование природной воды в технике требует ее предварительной очистки. Процесс, приводящий к снижению жёсткости воды, называется умягчением воды .

Способы умягчения воды можно разделить на три основные группы:

1) термическое умягчение воды; 2) реагентные методы умягчения; 3) умягчение воды методом ионного обмена.

1. Термический способ умягчения воды

Временная или карбонатная жесткость , устраняется нагреванием воды до 70-80°С и последующей фильтрацией. При нагревании протекают реакции:

Са(НСОз)2 = СаСО3 + СО2 + H2 O

Mg(HCО3 )2 = MgCО3 + CO2 + H2 О

Однако полностью устранить карбонатную жёсткость термическим методом нельзя, т. к. СаСО3 , хотя и незначительно, но растворим в воде. Растворимость МgСО3 достаточно высока, поэтому гидрокарбонат магния сразу же взаимодействует с водой, т.е.

наблюдается процесс гидролиза и вместо МgСО3 , в осадок выпадает

Mg(ОН)2:

MgC03 + H2 О =Мg(ОН)2 + СO2

Термическое умягчение воды связано со значительными затратами, поэтому применяется лишь в том случае, когда вода должна подвергаться соответствующему нагреву.

2. Реагентное умягчение воды.

Реагентное умягчение воды состоит в том, что при введении в

воду специальных реагентов катионы кальция и магния, растворенные в ней, переходят в практически нерастворимые соединения, которые выпадают в осадок. В зависимости от используемых реагентов методы водоумягчения классифицируют на известковый, известково-содовый, щелочной, фосфатный и бариевый.

2.1.Известковый метод.

Данный метод используют для частичного устранения из воды карбонатной жесткости.

При введении в воду гашёной извести в виде известкового молока гидрокарбонат кальция соли осаждаются в виде карбонатов:

Са(НСОз)2 + Са(ОН)2 = 2СаСОз + 2Н2 О, Дальнейшее введение в воду извести приводит к гидролизу

магниевых солей и образованию малорастворимого гидроксида магния, который при рН≥ 10,2…10,3 выпадает в осадок:

Mg(HCO3 )2 + Ca(OH)2 = MgCО3 + СаСО3 + CO2 + 2H2 О MgCО3 + Ca(OH)2 = Mg(OH)2 + CaCO3 ,

Известкованием устраняют из воды и некарбонатную магниевую жесткость при условии, что рН воды будет не ниже 10,2 (при других значениях рН воды гидроксид магния не выпадает в осадок):

MgSO4 + Ca(OH)2 = Mg(OH)2 + CaSO4

MgCl2 + Ca(OH)2 = Mg(OH)2 + CaCl2

Приведенные уравнения показывают, что магниевая жесткость устраняется, но значение общей жесткости остается неизменным, так как магниевая жесткость заменяется кальциевой, некарбонатной. Поэтому данный способ можно применять только для умягчения воды с большим значением карбонатной жесткости.

Устранение временной жесткости нейтрализацией гидрокарбонатов гашеной известью применяется крайне редко, т. к. а) мелкодисперсные осадки плохо осаждаются, и требуется укрупнение частиц; б) большое количество мелкодисперсных органических веществ препятствует образованию осадка.

2.2.Известково-содовый

Этот метод используют для одновременного понижения карбонатной и некарбонатной жесткости, когда не требуется глубокого умягчения воды.

Химизм процесса описывается реакциями: MgS04 + Na2 СОз = MgСОз↓ + Na2 SO4 CaCl2 + Na2 CO3 = СаСОз↓ + 2NaCl

(Уравнения реакций устранения карбонатной жесткости с помощью извести смотри выше в п.2.1.).

После добавления в воду реагентов происходит мгновенное образование коллоидных соединений СаСОз и Mg(OH)2 , однако их переход от коллоидного состояния в грубодисперсное, т.е. в то состояние, при котором они выпадают в осадок, занимает длительное время. Поэтому часто известково-содовый способ сочетают с термическим. Например, такое сочетание используют при умягчении воды, которая используется для питания котлов низкого давления, для подпитки теплосети и т.д.

Глубина умягчения воды при известково-содовом методе соответственно равна: без подогрева воды жесткость понижается до

1…2мэкв/л;

при подогреве воды до 80…90о С жесткость понижается до

0,2…0,4мэкв/л.

2.3. Щелочной метод.

Данный метод умягчения воды описывается следующими уравнениями химических реакций:

Ca(HCO3 )2 + 2NaOH = CaCO3 ↓ + Na2 CO3 + H2 O

Mg(HCO3 )2 + 2NaOH = Mg(OH)2 ↓ + Na2 CO3 + H2 O + CO2

CaSO4 + Na2 CO3 = CaCO3 ↓ + Na2 SO4

CaCl2 + Na2 CO3 = CaCO3 ↓ + 2NaCl

CO2 +NaOH = Na2 CO3 + H2 O

MgSO4 + 2NaOH = Mg(OH)2 ↓ + Na2 SO4

MgCl2 + 2NaOH = Mg(OH)2 ↓ + 2NaCl

Из приведенных уравнений реакций следует:

1) гидроксид натрия (NaOH) в процессе умягчения воды расходуется на устранение карбонатной жесткости и нейтрализацию углекислого газа, растворенного в воде.

2) сода (Na 2 CO3 ), образующаяся при распаде гидрокарбонатов и нейтрализации углекислого газа, используется для удаления некарбонатной жесткости.

Глубина умягчения воды при щелочном методе такая же, как и при известково-содовом, т.е. значение остаточной жесткости практически около 1мэкв/л, а при подогреве умягчаемой воды –

0,2…0,4мэкв/л.

2.4.Фосфатный метод.

Данный метод умягчения воды является наиболее эффективным реагентным методом. Химизм процесса умягчения воды фосфатом натрия описывается следующими уравнениями реакций:

3CaS04 + 2Na3 P04 = Саз (РО4 )2 ↓ + Na2 SO4 3MgCl2 + 2Na3 PO4 = Mg3 (PO4 )2 ↓ + 6NaCl 3Ca(HCO3 )2 + 2Na3 PO4 = Ca3 (PO4 )2 ↓ + 6NaHCO3 3Mg(HCO3 )2 + 2Na3 PO4 = Mg3 (PO4 )2 ↓+ 6NaHCO3

Как видно из приведенных уравнений реакций, сущность метода заключается в образовании кальциевых и магниевых солей фосфорной кислоты, которые обладают малой растворимостью в воде и поэтому достаточно полно выпадают в осадок.

Фосфатное умягчение обычно осуществляют при подогреве воды до 105…1500 С, достигая уменьшения жесткости до 0,02...0,03мэкв/л. Из-за высокой стоимости фосфата натрия фосфатный метод обычно используют для доумягчения воды, предварительно умягченной известью и содой. Данный метод используется, например, для подготовки питательной воды для котлов среднего и высокого давления (588…980МПа).

2.5.Бариевый метод.

Умягчение воды основано на введении в нее гидроксида бария или алюмината бария и образовании практически нерастворимых соединений кальция и магния, а также сульфата бария. Химизм процесса описывается следующими уравнениями реакций:

CaSO4 + Ba(OH)2 = Ca(OH)2 ↓ + BaSO4 ↓

CaCl2 + BaAl2 O4 = BaCl2 + CaAl2 O4 ↓

Ca(HCO3 )2 + BaAl2 O4 = CaAl2 O4 ↓ + BaCO3 ↓ + H2 O + CO2

(Аналогичные уравнения реакций можно записать и для солей магния).

Бариевый метод умягчения воды очень дорогой, а бариевые соли ядовиты, поэтому его целесообразно применять при частичном обессоливании воды за счет извлечения сульфатов.

Пример 3. Жесткость воды равна 5,4 мэкв ионов кальция в 1 л воды. Какое количество фосфата натрия Na3 P04 необходимо взять, чтобы понизить жесткость 1 т воды практически до нуля.

Решение : Задачу решаем, используя формулу

Ж = m / Э V, (1)

где m – масса вещества, обусловливающего жёсткость воды, или применяемого для устранения жёсткости воды, г;

Э – эквивалентная масса этого вещества; г/моль; V – объём воды, л.

Э (Na3 PO4 ) = М(Na3 PO4 ) / n В,

где n – количество ионов металла; В – валентность металла.

Э(Na3 PO4 ) = 164 / 3 =54,7 (г/моль)

Из уравнения (1) выразим массу

m = Ж Э V = 5,4 54,7 1000 = 295,38 (г) Ответ: m = 295,38г.

3. Методы ионного обмена

Катионитовый метод умягчения воды основан на способности некоторых практически нерастворимых в воде веществ, называемых катионитами , обменивать содержащиеся в них активные группы катионов (натрия, водорода и др.), на катионы кальция или магния, находящиеся в воде.

В настоящее время большое распространение получили ионообменные смолы, которые получают на основе синтетических полимеров. Ионнообменные смолы – это сетчатые, трёхмерные полимеры, не растворяющиеся в воде, но ограниченно набухающие в ней и содержащие групы, способные к обмену ионов

Умягчаемую воду фильтруют через слой катионита, при этом катионы кальция и магния из воды переходят в катионит, а в воду

Проблема жесткой воды знакома как городским жителям, так и тем, кто проживает за городом и пользуется водой из скважины или колодца.

Практически вся вода из водопровода имеет в своем составе соли магния и кальция. Именно они отвечает за такой показатель, как жесткость. Чем выше их концентрация, тем жестче жидкость.

Переизбыток солей не только вреден для организма, но и опасен для сантехники, бытовых приборов, труб. Зарастание солями поверхностей изнутри снижает теплоотдачу, приводит к быстрой поломке техники.

По степени жесткости воду делят на:

  • мягкую,
  • среднюю,
  • жесткую,
  • сверхжесткую.

Мягкую можно получить только из скважины большой глубины, средняя бежит из наших кранов, а последние две встречаются практически повсеместно и доставляют немало хлопот.

Жесткая вода:

  • приводит к отложению камней в суставах и почках,
  • вынуждает использовать больше порошка и моющих средств,
  • приводит к поломкам различных элементов оборудования, запорной арматуры.

Справиться с проблемой помогут фильтры умягчители . Они заменяют ионы магния и кальция на безопасные ионы натрия.

Современные системы умягчения воды помогут решить проблему эффективно и быстро.

Существует несколько способов сделать воду мягче. Самый простой — кипячение, но полностью избавиться от солей это не поможет.

Раньше в воду добавляли кальцинированную соду или известь, сегодня применяют ортофосфат натрия. Но данный способ требует наличия большого резервуара, постоянного пополнения реагента, утилизацию отходов, а для использования в домашних условиях это совсем неудобно.



Гораздо практичнее и эффективнее ионообменные фильтры, которые могут снизить концентрацию солей до 0,01 мг/л.

Еще один популярный вид фильтров — электромагнитный. В основе его действия – это электромагнитные волны, которые заставляют кристаллы соли изменить свою форму, и жидкость становится мягче.

Качественный фильтр умягчения воды для дачи должен отвечать следующим требованиям:

  • иметь возможность технологической промывки, чтобы не допускать быстрого засорения ячеек фильтра (обычно данному требованию соответствуют магистральные фильтры грубой очистки),
  • не содержать полифосфаты и другие реагенты (специалисты не рекомендуют использовать реагентные методы для получения питьевой воды),
  • работать бесперебойно без контроля с вашей стороны,
  • иметь экономный расход электроэнергии.

Последним двум требованиям соответствуют электромагнитные фильтры, уверенно набирающие популярность в России.

Но прежде чем принять решение об установке того или иного оборудования, рекомендуется провести анализ жидкости и обратиться к специалистам, которые подберут оптимальный фильтр умягчения для коттеджа исходя из ваших потребностей и особенностей дома и источника.

Статьи по теме: