Термомайзеры — автоматические регуляторы температуры. Системы автоматического регулирования температуры

Каждый огородник или садовод мечтает иметь на своем участке теплицу. Теплица — своеобразная курортная зона, где растения чувствую себя хорошо не зависимо от погодных условий. А как приятно и полезно получить урожай салата, редиса ранней весной, когда на только появившихся проталинках появляется печеночница обыкновенная!

Естественно, для получения подобных результатов необходимо не только построить хорошую теплицу, но и поддерживать там оптимальную температуру. Важна температура воздуха и почвы.

Эти факторы влияют на впитываемость полезных элементов, влаги; качественные и количественные показатели урожая; возникновение разнообразных заболеваний.

Любой огородник должен понимать, что существует прямая связь между температурой воздуха, грунта внутри теплицы, возможным урожаем. Однако многие соседствующие культуры любят разные режимы влажности и температуры. Оптимизировав размещение культур в теплице, можно пользоваться весомой температурной разницей в различных её частях.

В теплице, как и в не защищенном грунте, имеются температурные суточные колебания. Слишком резкие, превышающие 4 – 8 °С, перепады негативно отражаются на росте, развитии растений, урожайности. Приводят к частым болезням и гибели культур. В зависимости от вида растения температура почвы и воздуха в теплице должна находиться на отметке 14 – 25 °С.

Автоматическое регулирование - это очень удобно. При помощи терморегулятора для теплиц вы можете поддерживать в сооружении требуемую температуру воздуха.

Виды терморегуляторов и их характеристика

Выделяется множество типов термостатов. Чтобы сделать правильный выбор, необходимо знать их особенности. Существует 3 основных типа.


  1. Электронный термостат. Имеет жидкокристаллический дисплей, что дает возможность получать точную информацию о состоянии .
  2. Сенсорные устройства. Хороши тем, что в них можно задать программу работы, что дает возможность создавать различную температуру в разное время суток.
  3. Механическое изделие. Наиболее простая установка, позволяющая контролировать температуру почвы. При этом температура задается один раз, а потом вы просто корректируете ее. Идеальный вариант для небольших парников.

Как выбрать терморегулятор

Выбирая термостат, следует руководствоваться тем, что вы желаете получить в конечном счете. Прежде всего следует обратить внимание на такие характеристики:

  • особенности установки;
  • способ управления;
  • внешний вид;
  • мощность;
  • наличие или отсутствие дополнительных функций.

При выборе терморегуляторов для теплиц особое внимание стоит уделить мощности. Она должна быть больше, чем требуемая мощность обогрева грунта. Берите с запасом! При этом вся работа контролируется датчиком. Он может быть:

  • внешним;
  • скрытым.

Цепь может состоять из нескольких элементов. Внешний вид терморегуляторов тоже бывает разным. Монтаж может быть или навесным, или скрытым.

Особенности установки

При монтаже системы своими руками стоит знать, что регулятор ведет работу от датчиков - освещенности и температуры. Днем температура в строении будет выше, ночью ниже. В зависимости от этого меняется и отопление. Параметры для терморегулятора такие:

  • предел освещенности - от 500 до 2600 люкс;
  • отклонение в питании прибора - до 20%;
  • диапазон температур - от +15 до 50 градусов;


  • при переходе предела освещенности перепад температурного значения - до 12 градусов;
  • точность - около 0,4 градуса.

При установке своими руками системы следует знать, что в терморегулятор входит блок корректировки и блок регулирования температур. Выполнить их можно на транзисторах. Варьировать температуру позволяет переключатель. Реле можно объединить с нагревательным устройством для печки при помощи контактов. На регуляторе может находиться выходное реле, контролирующее обогрев.

В датчики включены фоторезисторы и терморезисторы. Они реагируют на различные изменения в окружающей среде. Установить настройки можно согласно инструкции, представленной изготовителем.

Настроить установку своими руками следует, начав с градуирования шкалы резистора. Сначала датчики опускают в подогретую воду, а затем определяют температуру. Далее ведется градуирование датчика освещения. Собирать регулятор температур разрешается внутри теплиц. Располагают его вблизи нагревательного устройства, в качестве которого может выступать печка.

Обзор терморегулятора (видео)

Как вести работу с терморегулятором

Терморегуляторы, вне зависимости от того, сделаны они своими руками либо приобретены в магазине, очень схожи по принципу действия. Ввиду этого работать с ними легко. Чем характеризуется работа с устройством?

  • Прокручивать меню помогает специальная кнопка.
  • Регулировка температуры происходит вручную.
  • В памяти аппарата можно записывать настройки для быстрого включения.
  • Применение специальных кнопок позволяет вести контроль над работой котла и печки, устанавливать характеристики обогрева.
  • Если есть дисплей с показаниями, можно узнать, каким является обогрев в данныйпериод времени.


Помимо прочего, терморегуляторы дают возможность вести управление котлом для обогрева теплицы.

  1. После того как на контроллер подается питание, датчики опрашиваются на предмет получения информации в реальном времени. Затем контроллер ведет сравнение показаний и уже записанной информации для дня или ночи и подбирает необходимые настройки для терморегулятора.
  2. По прошествии 5 минут происходит активизация терморегулятора, а котел начинает работу.
  3. Если обогрев недостаточный, начинают функционировать нагреватель с насосом. Подается команда об увеличении подачи топлива, что увеличивает обогрев.

Терморегуляторы многофункциональны. С их помощью можно обогреть теплицу и задать требуемую температуру для воздуха в строении, а также обогреть грунт и воду.

Регулятор способен поддерживать оптимальные условия среды в любой . Некоторые устройства включаются и работают самостоятельно, что очень удобно. Подключают их к контроллеру, датчикам тепла, печке и котлу. В итоге вести контроль над температурным режимом можно в полной мере.


Изготовление простого регулятора своими руками

Выполнить регулятор своими руками можно из стандартного бытового термометра. Однако его придется модифицировать.

  • Сначала разберите устройство, но помните, что действовать нужно осторожно.
  • В шкале, в месте расположения области требуемого предела регулирования, выполняется отверстие. Его диаметр должен быть меньше 2,5 миллиметров. Напротив него фиксируется фототранзистор. Берется листовой алюминий, делается уголок, в котором просверливается 2,8-миллиметровое отверстие. Фототранзистор приклеивают на клей «Момент» в гнездо.
  • Ниже отверстия фиксируют уголок, чтобы при превышении температуры (днем) у стрелки не было возможности пройти отверстие. Это предотвратит включение обогрева, когда этого не требуется.
  • С наружной стороны на термометре устанавливают 9-вольтовую лампочку. В корпусе термометра для нее просверливают отверстие. Между шкалой и лампочкой внутри располагают линзу. Она нужна, чтобы устройство срабатывало четко.
  • Провода от лампочки проводятся через отверстие в корпусе, а провода от фототранзистора - через отверстие в шкале. Общий жгут помещают в хлорвиниловую трубку и фиксируют зажимом. Напротив лампочки сверлят 0,4-миллиметровое отверстие.


  • Кроме датчика в терморегуляторе должен быть стабилизатор напряжения. Также требуется фотореле. Питание стабилизатора ведется от трансформатора. В роли фотоэлемента для фотореле служит модифицированный транзистор вида ГТ109. Все, что нужно сделать, это удалить у его корпуса шляпку и обломать базовый вывод.
  • В качестве нагрузки используется механизм, выполненный из реле заводского исполнения. Работа в данном случае идет по принципу электромагнита, где стальной якорь идет внутрь катушки и оказывает влияние на микровыключатель, который зафиксирован при помощи 2 кронштейнов. А микровыключатель приводит в действие электромагнитный пускатель, сквозь контакты которого напряжение питания идет на нагревательный прибор.
  • Фотореле вместе с субблоками питания помещают в корпус, изготовленный из изоляционного материала. К нему крепят термометр на специальной штанге. На лицевой стороне находятся неоновая лампочка (она будет подавать сигнал о начале работы нагревательных элементов) и тумблер.
  • Чтобы регулятор работал точно, следует добиться четкой фокусировки света, исходящего от лампочки на фотоэлемент.

Как сделать термостат своими руками (видео)

Таким образом, несмотря на сложность работ, установка терморегулятора существенно упрощает уход за . Культуры, получающие оптимальный микроклимат, лучше развиваются, а значит, урожай будет значительно больше.

Для сохранения требующегося уровня температуры в нагревательных системах применяются электрические устройства, называемые терморегуляторы. Все приборы, имеющие в составе электронагревательные элементы, оборудованы электрическими терморегуляторами.

Необходимость и особенности терморегуляторов

Терморегулятор представляет собой электрическое устройство необходимое для автоматического регулирования температуры в охлаждающем и отопительном оборудовании. Они монтируются в системах обогрева, искусственного климата, охлаждающих либо морозильных системах. Широко используются в домашнем хозяйстве в обустройстве теплиц.

Цель работы терморегулятора определяется включением либо выключением нагревательных элементов какого-либо прибора при показателях температуры ниже или выше указанных соответственно. Благодаря работе терморегулирующих устройств, воздух в помещении, вода, поверхности приборов и т.п. имею стабильную температуру.

Работают все терморегуляторы, в каком бы приборе они не находились, по единому принципу. Автоматический регулятор получает данные о температуре из окружающей его среды, благодаря тому, что оснащается встроенным или выносным термодатчиком. Опираясь на полученную информацию, терморегулятор определяет, когда нужно включаться и отключаться. Чтобы исключить сбои в работе устройства, термодатчик надлежит устанавливать в помещении подальше от прямого влияния различного нагревательного оборудования, в противном случае, может возникнуть искажение показателей и, естественно, регулятор будет работать ошибочно.

Классификация терморегуляторов

Принцип работы всех устройств, регулирующих температуру одинаковый, но видов терморегуляторов очень много, и они отличаются по:

  • Назначению:
    комнатные;
    погодные.
  • Способу монтажа:
    стенные;
    настенные;
    крепящиеся на DIN рейку.
  • Функциональным возможностям:
    центральное регулирование;
    беспроводное регулирование.
  • Способу управления:
    механические;
    электромеханические;
    цифровые (электронные).

Также терморегуляторы отличаются техническими свойствами:

  • Диапазон измерений температуры. Разные модели терморегуляторов в зависимости от модификации поддерживают температуру от -60 до 1200 °С.
  • Количество каналов:
    одноканальные. Применяются для автоматической регулировки и сохранения температуры объекта на указанном уровне. Отличаются меньшими размерами и весом от многоканальных приборов;
    многоканальные. Выпускаются для фиксирования температуры серии стандартных термодатчиков. Их используют на производствах, лабораториях, а также в народном хозяйстве.
  • Габаритные размеры:
    компактные;
    большие;
    крупные.

Применение регуляторов и датчиков температуры

Терморегуляторы могут устанавливаться в жилых и промышленных помещениях. В целом можно выделить учитывающие:

  • И контролирующие температуру воздуха в конкретной зоне помещения. Эти приборы относятся к категории комнатных регуляторов. Бывают аналоговые и цифровые.
  • И поддерживающие температуру определённых предметов – это регуляторы для полового отопления.
  • Температуру воздуха снаружи – погодные термостаты.

Регуляторы, которые эксплуатируются в промышленных помещениях, бывают двух видов:

  • Индустриальные пространственные . К этим приборам относятся аналоговые стенные регуляторы, имеющие повышенную защиту.
  • Индустриальные с отдельными датчиками . Это аналоговые приборы с внешними датчиками, которые могут быть настенными или устанавливаться на специальную рейку.
    Датчики могут устанавливаться на стены или в полу дома, в зависимости от их типа и назначения. Встроенные приборы монтируются в монтажную коробку прямо в стену, а приборы накладного типа просто прикрепляют на стену.

Выделяют также несколько видов датчиков по назначению:

  • Датчик температуры пола.
  • Датчик температуры воздуха.
  • Инфракрасный датчик для пола и воздуха.

Датчик, измеряющий температуру воздуха, часто размещают на корпусе терморегулятора. Терморегуляторы с инфракрасными датчиками можно применять для контроля всей системы отопления. Эти датчики отлично подходят для установки в ванные комнаты, душевые, сауны и прочие помещения с повышенной влажностью. Сам регулятор температуры надлежит размещать обязательно в сухом месте, от переизбытка влаги он может повредиться. Правда есть модели, с повышенной герметичностью, и их монтаж в ванную ничем не опасен для них.

Регуляторы для тёплых полов отличаются своим внутренним устройством, это:

  • Цифровые.
  • Аналоговые.

Цифровые устройства имеют хорошую стойкость к разным типам помех, поэтому исключают искажение данных и гарантируют большую точность, чем аналоговые.

Особенности функциональных возможностей электрических регуляторов температуры:

  • Беспроводное регулирование (дистанционное) . Рекомендовано применять при дополнительной инсталляции греющих элементов и проведении реконструкций, когда выполнять классическую регулировку невозможно или довольно трудно. Дистанционное управление исключает дополнительные строительно-ремонтные работы при электроинсталляции (к примеру, монтаже кабельной проводки).
  • Устройства программирования . Центральное (классическое) устройство позволяет производить регулирование температуры целого крупного объекта с одной точки. Для программирования регулятора используют компьютер или устройства управления. Также контроль осуществляется с помощью телефонного модема.

Принцип действия, плюсы и минусы

Механический регулятор температур считается простым и практичным устройством. Применяется в нагревательных и охладительных целях. Чаще всего представляет внешнее электроустановочное изделие, предназначенное для внутренней установки в жилые помещения в системы отопления. Внешний вид подобен стандартному запорному крану.

Специфичностью механических терморегуляторов является отсутствие электрической составляющей. Работает аппарат по особому принципу, заключающемуся в свойствах некоторых веществ и материалов менять свои механические качества от изменения температуры.

При изменении температуры до конкретно указанной, происходит разрыв или замыкание электрической цепи, что обуславливает выключение либо включение приборов для нагрева. Требуемый показатель температуры выбирается на шкале прибора путём вращения специального колесика.

Положительные моменты механических термостатов:

  • Надёжность.
  • Устойчивость к перепадам напряжения.
  • Не подвластны сбоям электроники.
  • Работают при отрицательных температурах.
  • Можно эксплуатировать в условиях резких изменений температуры.
  • Простое управление.
  • Длительный срок службы.

Недостатки:

  • Наличие погрешности.
  • Вероятность появления небольших щелчков при подаче напряжения на инфракрасные нагреватели.
  • Низкая функциональность.

Независимо от недостатков, они являются самыми распространёнными и встречаются в организации обогревательных систем чаще других термостатов, благодаря простому управлению и невысокой стоимости.

Эксплуатация электромеханических термостатов

Электромеханические регуляторы температуры используется в различных бытовых электроприборах. Эти изделия бывают двух модификаций:

  • С биметаллической пластиной и группой контактов . Пластина, нагреваясь до определённой температуры, изгибается и размыкает контакты, из-за чего прекращается подача электротока на нагревательную спираль или ТЭН прибора. После остывания пластина прогибается обратно в своё исходное положение, контакты при этом замыкаются, возвращается подача электричества и прибор нагревается. Приборами с этими регуляторами пользуется в повседневной жизни практически каждый человек – это утюги, электроплиты, электрочайники и т.п.
  • С капиллярной трубкой . Изделие состоит из трубки, наполненной газом и помещённой в ёмкость с водой, а также контактов. Принцип действия базируется на особенностях материалов расширяться при определённых температурах. Вещество, находящееся в полой трубке, начинает расширяться при разогреве воды, из-за чего возникает замыкание контакта. После охлаждения воды, контакты размыкаются, а электроприбор начинает разогреваться. Подобными регуляторами чаще всего оснащаются водонагреватели, масляные обогреватели, бойлеры.
  • Автоматическое включение обогрева.
  • Герметичность.
  • Невысокая цена.

Минусы этих приборов:

  • Низкая функциональность.
  • Сложность добиться высокой точности регулирования.

Специфика электронных терморегуляторов

Электронные устройства очень распространены, они эксплуатируются с многими электрообогревателями. Обычно ими оборудуют общие отопительные системы и кондиционирования, а также тёплые полы.

Главные составляющие части:

  • Выносной термодатчик.
  • Контроллер — устройство, устанавливающее конкретный уровень температуры в доме, а также создающее команды включения и отключения нагревателя.
  • Электронный ключ – контактная группа.

Датчик прибора отправляет данные о температуре контроллеру, который обрабатывает полученный сигнал и решает, требуется снижать или повышать температуру.

Виды электронных термостатов:

  • Обычные терморегуляторы . В этих приборах можно выставлять желаемые пределы температуры либо точную температуру, которая будет сохраняться. Устройства оборудованы электронным дисплеем.
  • Цифровые терморегуляторы :
    С закрытой логикой. Устройства имеют неизменный алгоритм работы. Регулирование выполняется при помощи передачи команд по указанным параметрам конкретным приборам, которые были установлены заранее. Параметры задаются заранее в зависимости от нужд используемых приборов для определённой температуры. Корректировка программы этих регуляторов практически неосуществима, можно только менять основные параметры. Но именно эти термостаты наиболее часто применяют в быту.
    С открытой логикой. Эти аппараты контролируют точный процесс обогрева помещений. Имеют расширенные настройки, благодаря чему можно поменять их алгоритм работы. Управляются кнопками или сенсорной панелью. Путём этих устройств можно включать либо отключать обогревательные системы в строго заданное время. Но их перепрограммированием должны заниматься специалисты. Эти регуляторы применяют чаще на производстве и в промышленности, чем в быту.

Программируемые термостаты удобно эксплуатировать, они открывают широкие возможности для тонкой настройки приборов на нужные температурные показатели, зависящие от требований отдельных зон помещений.

Достоинства:

  • Широкий диапазон регулировок.
  • Разнообразие дизайнерских решений.
  • Экономия электроэнергии.
  • Высокая точность.
  • Эффективность.
  • Безопасность при эксплуатации.

Также терморегуляторы просты в управлении и имеют не высокую стоимость, только эти два плюса не касаются регуляторов с открытой логикой. Электронные регуляторы нередко являются составной частью системы умного дома.

Терморегуляторы — небольшие по размеру, но весьма практичные в быту устройства для контроля теплоотдачи. В зависимости от реальной потребности регуляторы температуры для батарей отопления увеличивают или сокращают объем теплоносителя. Согласитесь, это полезно и для самочувствия владельцев дома/квартиры, и для их кошельков.

Желающим приобрести терморегуляторы для оснащения радиаторов мы предлагаем ознакомиться с подробным описанием видов устройств регулировки отдачи тепла. Мы привели и сравнили их способы управления, принцип действия, стоимость, специфику монтажа. Наши рекомендации помогут выбрать оптимальную разновидность.

Представленную к рассмотрению информацию, собранную и систематизированную для будущих покупателей регуляторов тепла, мы дополнили наглядными фото-подборками, схемами, нормативными таблицами, видео.

Известно, что температура в разных комнатах дома не может быть одинаковой. Также необязательно постоянно поддерживать тот или иной температурный режим.

Например, в спальне ночью необходимо опускать температуру до 17-18 о С. Это положительно влияет на сон, позволяет избавиться от головных болей.

Галерея изображений

Оптимальная температура на кухне составляет 19 о С. Это связано с тем, что в помещении располагается много обогревательной техники, которая генерирует дополнительное тепло. Если в ванной комнате температура будет ниже 24-26 о С, то в помещении будет ощущаться сырость. Поэтому здесь важно обеспечить высокую температуру.

Если в доме предусмотрена детская комната, то ее температурный диапазон может меняться. Для ребенка до года потребуется температура 23-24 о С, для детей постарше достаточно будет 21-22 о С. В остальных комнатах температура может варьироваться от 18 до 22 о С.

Комфортный температурный фон подбирается в зависимости от назначения помещения и частично от времени суток

В ночное время можно понижать температуру воздуха во всех комнатах. Необязательно поддерживать высокую температуру в жилище в случае, если дом некоторое время будет пустовать, а также во время солнечных теплых дней, при работе некоторых электроприборов, генерирующих тепло и др.

В этих случаях установка термостата сказывается на микроклимате положительно — воздух не перегревается и не пересушивается.

Из таблицы видно, что в жилых комнатах в холодное время года температура должна составлять 18-23 о С. На лестничной площадке, в кладовой допустимы низкие температуры — 12-19 о С

Терморегулятор решает следующие проблемы:

  • позволяет создавать определенный температурный режим в комнатах разного назначения;
  • экономит ресурс котла, уменьшает количество расходных материалов для обслуживания системы (до 50%);
  • появляется возможность без отключения всего стояка производить аварийное отключение батареи.

Следует помнить, что с помощью термостата невозможно повысить КПД батареи, увеличить ее теплоотдачу. Сэкономить на расходных материалах смогут люди с индивидуальной системой отопления. Жители многоквартирных домов с помощью термостата смогут лишь регулировать температуру в комнате.

Разберемся, какие существуют , и как сделать верный выбор оборудования.

Виды терморегуляторов и принципы работы

Терморегуляторы разделяют на три вида:

  • механические , с ручной настройкой подачи теплоносителя;
  • электронные , управляемые выносным термодатчиком;
  • полуэлектронные , управляемые термоголовкой с сильфонным устройством.

Главное достоинство механических приборов — невысокая стоимость, простота в эксплуатации, четкость и слаженность в работе. Во время их эксплуатации нет необходимости использовать дополнительные источники энергии.

Модификация позволяет в ручном режиме регулировать , поступающего в радиатор, тем самым контролируя теплоотдачу батарей. Прибор отличается высокой точностью регулировки степени нагрева.

Существенный недостаток конструкции заключается в том, что в ней отсутствует разметка для регулировки, поэтому производить настройку агрегата придется исключительно опытным путем. С одним из методов балансировки мы ознакомимся ниже

Основные элементы регулятора механического типа — термостат и термостатический клапан

Механический терморегулятор состоит из следующих элементов:

  • регулятора;
  • привода;
  • сильфона, заполненного газом или жидкостью;

Электронные термостаты — более сложные конструкции, в основе которого лежит программируемый микропроцессор. С его помощью можно задавать определенную температуру в комнате путем нажатия нескольких кнопок на регуляторе. Некоторые модели многофункциональны, пригодны для управления котлом, насосом, смесителем.

Строение, принцип работы электронного прибора практически не отличается от механического аналога. Здесь термостатический элемент (сильфон) имеет форму цилиндра, его стенки гофрированы. Он заполнен веществом, которое реагирует на колебания температуры воздуха в жилище.

По время повышения температуры происходит расширение вещества, в результате чего на стенки образуется давление, что способствует движению штока, который автоматически закрывает клапан. При движении штока проводимость клапана увеличивается или уменьшается. Если температура снижается, то рабочее вещество сжимается, в результате сильфон не растягивается, а клапан открывается, и наоборот.

Сильфон обладают высокой прочность, большим рабочим ресурсом, выдерживают сотни тысяч сжатий на протяжении нескольких десятков лет.

Основной элемент электронного регулятора — термодатчик. В его функции входит передача информации о температуре окружающей среды, в результате чего система генерирует необходимое количество тепла

Электронные терморегуляторые условно разделяют на:

  • Закрытые терморегуляторы для радиаторов отопления не обладают функцией автоматического определения температуры, поэтому они настраиваются в ручном режиме. Отрегулировать возможно температуру, которая будет поддерживаться в комнате, и допустимые колебания температуры.
  • Открытые термостаты можно запрограммировать. Например, при понижении температуры на несколько градусов режим работы может измениться. Также возможно настроить время срабатывания того или иного режима, отрегулировать таймер. Используются такие приборы преимущественно в промышленности.

Электронные регуляторы работают от батареек или специального аккумулятора, который идет в комплекте с зарядкой. Полуэлектронные регуляторы идеально подходят для бытовых целей. Они идут с цифровых дисплеем, который отображает температуру помещения.

Принцип действия полуэлектронных устройств для регулировки теплоотдачи радиатором позаимствован из механических моделей, поэтому его регулировка осуществляется вручную

Газонаполненные и жидкостные термостаты

При разработке регулятора в качестве термостатического элемента могут использовать вещество в газообразном или жидком состоянии (например, парафин). Исходя из этого, приборы делят на газонаполненные и жидкостные.

Парафин (жидкий или газообразный) обладает свойством расширяться под действием температуры. В результате масса давит на шток, к которому подсоединен клапан. Шток частично перекрывает трубу, через который проходит теплоноситель. Все происходит автоматически

Газонаполненные регуляторы обладают высоким сроком службы (от 20 лет). Газообразное вещество позволяет более плавно и четко регулировать температуру воздуха в жилище. Приборы идут с датчиком, которые определяет температуру воздуха в жилище.

Газовые сильфоны быстрее срабатывают на колебания температуры воздуха в помещении. Жидкостные же отличаются более высокой точность в передаче внутреннего давления на подвижные механизм. При выборе регулятора на основе жидкого или газообразного вещества ориентируются на качество и срок службы агрегата.

Жидкостные и газовые регуляторы могут быть двух типов:

  • со встроенным датчиком;
  • с дистанционным.

Если радиатор подключен к рабочей системе отопления, то из него следует слить воду. Сделать это можно с помощью шарового крана, запирающего вентиля или любого другого устройства, блокирующего подачу воды из общего стояка.

После этого открывают клапан батареи, располагающийся в области места поступления воды в систему, перекрывают все краны.

После того, как из батареи была устранена вода, ее необходимо продуть, чтоб убрать воздух. Также это можно сделать с помощью крана Маевского

На следующем этапе выполняют снятие адаптера. Перед процедурой пол застилают материалом, хорошо поглощающим влагу (салфетками, полотенцами, мягкой бумагой и т.д.).

В комнату помещают термометр, затем отворачивают клапан до упора. В этом положении теплоноситель заполнит радиатор полностью, а значит, теплоотдача прибора будет максимальной. Через некоторое время необходимо зафиксировать полученную температуру.

Далее необходимо повернуть головку до упора в обратную сторону. Температура начнет понижаться. Когда термометр покажет оптимальные для помещения значения, то клапан начинают открывать до тех пор, пока не послышится шум воды и не произойдет резкий нагрев. В этом случае вращение головки прекращают, фиксируя ее положение.

Выводы и полезное видео по теме

В видео наглядно показано, как настроить терморегулятор и внедрить его в систему отопления. В качестве примера взять автоматический электронный регулятор Living Eco от бренда Danfoss:

Выбрать терморегулятор можно исходя из собственных пожеланий и финансовых возможностей. Для бытовых целей идеально подойдет механической и полуэлектронный агрегат. Любители smart-техники могут отдать предпочтение функциональным электронным модификациям. Установить приборы также возможно без привлечения специалистов.

Температура является показателем термодинамического состояния объекта и используется как выходная координата при автоматизации тепловых процессов. Характеристики объектов в системах регулирования температуры зависят от физических параметров процесса и конструкции аппарата. Поэтому общие рекомендации по выбору АСР температуры сформулировать невозможно и требуется тщательный анализ характеристик каждого конкретного процесса.

Регулирование температуры в инженерных системах производится значительно чаще, чем регулирование каких-либо других параметров. Диапазон регулируемых температур невелик. Нижний предел этого диапазона ограничен минимальным значением температуры наружного воздуха (-40 °С), верхний - максимальной температурой теплоносителя (+150 °С).

К общим особенностям АСР температуры можно отнести значительную инерционность тепловых процессов и измерителей (датчиков) температуры. Поэтому одной из основных задач при создании АСР температуры является уменьшение инерционности датчиков.

Рассмотрим в качестве примера, характеристики наиболее распространенного в инженерных системах манометрического термометра в защитном чехле (рис. 5.1). Структурную схему такого термометра можно представить в виде последовательного соединения четырех тепловых емкостей (рис. 5.2): защитного чехла /, воздушной прослойки 2 , стенки термометра 3 и рабочей жидкости 4. Если пренебречь тепловым сопротивлением каждого слоя, то уравнение теплового баланса для каждого элемента этого прибора можно записать в виде

G,Cpit, = а п? Sj і (tj _і - tj) - a i2 S i2 (tj - Сн), (5.1)

где Gj- масса соответственно чехла, воздушной прослойки, стенки и жидкости; C pj - удельная теплоемкость; tj - температура; a,i, а /2 - коэффициенты теплоотдачи; S n , S i2 - поверхности теплоотдачи.

Рис. 5.1. Принципиальная схема манометрического термометра:

  • 1 - защитный чехол; 2 - воздушная прослойка; 3 - стенка термометра;
  • 4 - рабочая жидкость

Рис. 5.2.

Как видно из уравнения (5.1), основными направлениями уменьшения инерционности датчиков температуры являются;

  • повышение коэффициентов теплоотдачи от среды к чехлу в результате правильного выбора места установки датчика; при этом скорость движения среды должна быть максимальной; при прочих равных условиях более предпочтительна установка термометров в жидкой фазе (по сравнению с газообразной), в конденсирующемся паре (по сравнению с конденсатом) и т. п.;
  • уменьшение теплового сопротивления и тепловой емкости защитного чехла в результате выбора его материала и толщины;
  • уменьшение постоянной времени воздушной прослойки за счет применения наполнителей (жидкости, металлической стружки); у термопар рабочий спай припаивается к корпусу защитного чехла;
  • выбор типа первичного преобразователя: например, при выборе необходимо учитывать, что наименьшей инерционностью обладает термопара в малоинерционном исполнении, наибольшей - манометрический термометр.

Каждая АСР температуры в инженерных системах создается для вполне конкретной цели (регулирования температуры воздуха в помещениях, тепло- или холодоносителя) и, следовательно, предназначена для работы в очень небольшом диапазоне. В связи с этим условия применения той или иной АСР определяют устройство и конструкцию как датчика, так и регулятора температуры. Например, при автоматизации инженерных систем широко применяются регуляторы температуры прямого действия с манометрическими измерительными устройствами. Так, для регулирования температуры воздуха в помещениях административных и общественных зданий при использовании эжекционных и вентиляторных доводчиков трехтрубной схемы тепло- и холодоснаб-жения применяют регулятор прямого действия прямого типа РТК (рис. 5.3), который состоит из термосистемы и регулирующего клапана. Термосистема, пропорционально перемещающая шток регулирующего клапана при изменении температуры рециркуляционного воздуха на входе в доводчик, включает чувствительный элемент, задатчик и исполнительный механизм. Эти три узла соединены капиллярной трубкой и представляют единый герметичный объем, заполненный термочувствительной (рабочей) жидкостью. Трехходовой регулирующий клапан управляет подачей горячей или холодной воды к теплообменнику эжекционного


Рис. 5.3.

а - регулятор; б - регулирующий клапан; в - термосистема;

  • 1 - сильфон; 2 - задатчик; 3 - ручка настройки; 4 - корпус;
  • 5, 6 - регулирующие органы соответственно горячей и холодной воды; 7 - шток; 8 - исполнительный механизм; 9 - чувствительный элемент

доводчика и состоит из корпуса и регулирующих органов. С повышением температуры воздуха рабочая жидкость термосистемы увеличивает свой объем и сильфон клапана перемещает шток и регулирующий орган, закрывая прохождение горячей воды через клапан. При увеличении температуры на 0, 5-1 °С регулирующие органы остаются неподвижными (проходы горячей и холодной воды закрыты), а при более высокой температуре открывается лишь проход холодной воды (проход горячей воды остается закрытым). Заданная температура обеспечивается вращением ручки настройки, связанной с сильфоном, который изменяет внутренний объем термосистемы. Регулятор может быть настроен на температуру в диапазоне от 15 до 30 °С.

При регулировании температуры в водо-и пароводных подогревателях и охладителях используются регуляторы типа РТ, которые незначительно отличаются от регуляторов типа РТК. Их основная особенность - совмещенное исполнение термобаллона с задатчиком, а также использование двухседельного клапана в качестве регулирующего органа. Такие манометрические регуляторы выпускаются на несколько 40-градусных диапазонов в пределах от 20 до 180 °С с диаметром условного прохода от 15 до 80 мм. В связи с наличием в этих регуляторах большой статической ошибки (10 °С) их не рекомендуется применять для высокоточного регулирования температуры.

Манометрические термосистемы используются также в пневматических П-регуляторах, широко применяемых для регулирования температуры в инженерных системах кондиционирования воздуха и вентиляции (рис. 5.4). Здесь при изменении температуры изменяется давление в термосистеме, которое через сильфон действует на рычаги, передающие усилие на шток пневмореле и мембрану. При равенстве текущей температуры с заданной вся система находится в равновесии, оба клапана пневмореле, питающий и стравливающий, закрыты. При увеличении давления на шток начинает открываться питающий клапан. К нему подведено давление от сети питания сжатым воздухом, в результате чего в пневмореле образуется давление управления, возрастающее от 0, 2 до 1 кгс/см 2 пропорционально увеличению температуры контролируемой среды. Этим давлением приводится в действие исполнительный механизм.

Для автоматического регулирования температуры воздуха в помещениях начали широко использоваться термостатические клапаны американской фирмы Honeywell и радиаторные терморегуляторы (термостаты) RTD, выпускаемые московским филиалом


Рис. 5.4.

с манометрической термосистемой:

  • 1 - шток пневмореле; 2 - узел неравномерности; 3, 9 - рычаги;
  • 4, 7 - винты; 5 - шкала; 6 - гайка; 8 - пружина; 10 - сильфон;
  • 11 - мембрана; 12 - пневмореле; 13 - термобаллон; 14 - питающий

клапан; 15 - стравливающий клапан

датской фирмы Danfoss, необходимая температура задается поворотом настроенной рукоятки (головки) с указателем от 6 до 26 °С. Понижение температуры на 1 °С (например, с 23 до 22 °С) позволяет экономить 5-7% тепла, потребляемого на отопление. Термостаты RTD позволяют избежать перегрева помещений в переходный и другие периоды года и обеспечить минимально необходимый уровень отопления в помещениях с периодическим проживанием людей. Кроме этого, радиаторные терморегуляторы RTD обеспечивают гидравлическую устойчивость для двухтрубной системы отопления и возможность ее регулировки и увязки в случае ошибок при монтаже и проектировании без использования дроссельных шайб и других конструктивных решений.

Терморегулятор состоит из регулирующего клапана (корпуса) и термостатического элемента с сильфоном (головки). Соединение корпуса и головки производится с помощью накидной гайки с резьбой. Для удобства монтажа на трубопровод и присоединения терморегулятора к отопительному прибору он комплектуется накидной гайкой с резьбовым ниппелем. Температура в помещении поддерживается путем изменения расхода воды через отопительный прибор (радиатор или конвектор). Изменение расхода воды происходит за счет перемещения штока клапана сильфоном, заполненным специальной смесью газов, изменяющих свой объем даже при незначительном изменении температуры окружающего сильфон воздуха. Удлинению сильфона при повышении температуры противодействует настроечная пружина, усилие которой регулируется поворотом рукоятки с указателем желаемого значения температуры.

Для лучшего соответствия любым системам отопления выпускаются два типа корпусов регулятора: RTD-G с малым сопротивлением для однотрубных систем и RTD-N с повышенным сопротивлением для двухтрубных систем. Корпуса изготавливаются для прямого и углового клапанов.

Термостатические элементы регуляторов изготавливаются в пяти вариантах: со встроенным датчиком; с дистанционным датчиком (длина капиллярной трубки 2 м); с защитой от неумелого использования и воровства; с ограничением диапазона настройки до 21 °С. В любом исполнении термостатический элемент обеспечивает ограничение настроенного диапазона температур или фиксации на требуемой температуре воздуха в помещении.

Срок эксплуатации регуляторов RTD 20-25 лет, хотя в гостинице «Россия» (Москва) зарегистрирован срок службы 2000 регуляторов более 30 лет.

Регулирующий прибор (погодный компенсатор) ECL (рис. 5.5) обеспечивает поддержание температуры теплоносителя в подающем и обратном трубопроводах системы отопления в зависимости от температуры наружного воздуха по соответствующему конкретному ремонту и конкретному объекту отопительному графику. Прибор воздействует на регулирующий клапан с электроприводом (при необходимости - и на циркуляционный насос) и позволяет осуществлять следующие операции:

  • поддержание расчетного отопительного графика;
  • ночное снижение температурного графика по недельным (интервал 2 ч) или 24-часовым (интервал 15 мин) программируемым часам (в случае электронных часов интервал 1 мин);
  • натоп помещения в течение 1 ч после ночного снижения температуры;
  • подключение через релейные выходы регулирующего клапана и насоса (или 2 регулирующих клапанов и 2 насосов);

Рис. 5.5. Погодный компенсатор ЕС/. с настройкой,

доступной потребителю:

1 - программируемые часы с возможностью задания периодов работы комфортной или пониженной температуры по суточному или недельному циклу: 2 - параллельное перемещение графика температуры в системе отопления в зависимости от температуры наружного воздуха (отопительного графика): 3 - переключатель режимов работы; 4 - место для инструкции по эксплуатации: 5 - сигнализация включения, текущего режима работы,

аварийных режимов;

О - отопление отключено, поддерживается температура, предотвращающая замерзание теплоносителя в системе отопления;) - работа с пониженной температурой в системе отопления; © - автоматическое переключение с режима комфортной температуры на режим с пониженной температурой и обратно в соответствии с заданием на программируемых часах;

О - работа без понижения температуры по суточному или недельному циклу; - ручное управление: регулятор выключен, циркуляционный насос включен постоянно, управление клапаном производится вручную

  • автоматический переход из летнего режима в зимний и обратно по заданной температуре наружного воздуха;
  • прекращение ночного снижения температуры при понижении наружных температур ниже заданного значения;
  • защиту системы от замораживания;
  • коррекцию отопительного графика по температуре воздуха в помещении;
  • переход на ручное управление приводом клапана;
  • максимальные и минимальные ограничения температуры воды на подаче и возможность фиксированного или пропорцио-

нального ограничения температуры обратной воды в зависимости от температуры наружного воздуха;

  • самотестирование и цифровую индикацию значений температур всех датчиков и состояний клапанов и насосов;
  • установку зоны нечувствительности, зоны пропорциональности и времени накопления;
  • возможность работы по накопленным за заданный период или текущим значениям температур;
  • задание коэффициента тепловой устойчивости здания и задание влияния отклонения температуры обратной воды на температуру воды на подаче;
  • защиту от образования накипи при работе с газовым котлом. В схемах автоматизации инженерных систем используются

также биметаллические и дилатометрические терморегуляторы, в частности электрический двухпозиционный и пневматический пропорциональный.

Электрический биметаллический датчик предназначен в основном для двухпозиционного регулирования температуры в помещениях. Чувствительным элементом этого прибора является биметаллическая спираль, один конец которой закреплен неподвижно, а другой свободен и удовлетворяет подвижным контактам, замыкающимся или размыкающимся с неподвижным контактом в зависимости от текущего и заданного значений температуры. Заданную температуру устанавливают поворотом шкалы настройки. В зависимости от диапазона настройки терморегуляторы выпускаются в 16 модификациях с общим диапазоном настройки от -30 до + 35 °С, причем каждый регулятор имеет диапазон 10, 20 и 30 °С. Погрешность срабатывания ±1 °С на средней отметке и до ±2, 5 °С на крайних отметках шкалы.

Пневматический биметаллический регулятор в качестве преобразователя-усилителя имеет сопло-заслонку, на которую действует усилие биметаллического измерительного элемента. Эти регуляторы выпускаются 8 модификаций, прямого и обратного действия с общим диапазоном настройки от +5 до +30 °С. Диапазон настройки каждой модификации 10 °С.

Дилатометрические регуляторы устроены на использовании разности коэффициентов линейного расширения инварного (железоникелевый сплав) стержня и латунной или стальной трубки. Эти терморегуляторы по принципу действия регулирующих устройств не отличаются от подобных регуляторов, использующих манометрическую измерительную систему.

Статьи по теме: