Как мерить шаг резьбы. Обзор разновидностей резьбовых соединений. Комбинированный трубный ключ

Эксплуатационное назначение резьбы

Крепежная резьба обеспечивает полное и надежное соединение деталей при различных нагрузках и при различном температурном режиме. К этому типу относятся метрическая .

Крепежно-уплотнительная резьба предназначена для обеспечения плотности и непроницаемости резьбовых соединений (без учета ударных нагрузок). К этому типу относятся метрическая с мелким шагом, трубная цилиндрическая и коническая резьбы и коническая дюймовая резьба.

Ходовая резьба служит для преобразования вращательного движения в поступательное. Она воспринимает большие усилия при сравнительно малых скоростях движения. К этому типу относятся резьбы: трапецеидальная , упорная , прямоугольная , круглая .

Специальная резьба имеет специальное назначение и применяется в отдельных специализированных отраслях производства. К ним можно отнести следующие:

- метрическая тугая резьба - резьба, выполненная на стержне (на шпильке) и в отверстии (в гнезде) по наибольшим предельным размерам; предназначена для образования резьбовых соединений с натягом;

- метрическая резьба с зазорами - резьба с необходимая для обеспечения легкой свинчиваемости и развинчиваемости резьбовых соединений деталей, работающих при высоких температурах, когда создаются условия для схватывания (сращивания) окисных пленок, которыми покрыта поверхность резьбы;

- часовая резьба (метрическая) - резьба, применяемая в часовой промышленности (диаметры от 0,25 до 0,9 мм);

- резьба для микроскопов - резьба, предназначена для соединения тубуса с объективом; имеет два размера: 1) дюймовая - диаметр 4/5 І (20,270 мм) и шаг 0,705 мм (36 ниток на 1І); 2) метрическая - диаметр 27 мм, шаг 0,75 мм;

- окулярная многозаходная резьба - рекомендуемая для оптических приборов; профиль резьбы - равнобочная трапеция с углом 60 0 .

Рисунок 104 - Классификация резьб

Достоинства и недостатки резьбовых соединений
Достоинства резьбовых соединений:
- высокая нагрузочная способность и надежность;
- взаимозаменяемость резьбовых деталей в связи со стандартизацией резьб;
- удобство сборки и разборки резьбовых соединений;
- централизованное изготовление резьбовых соединений;
- возможность создания больших осевых сил сжатия деталей при небольшой силе, приложенной к ключу.

Недостатки резьбовых соединений:
- главный недостаток резьбовых соединений – наличие большого количества концентраторов напряжений на поверхностях резьбовых деталей, которые снижают их сопротивление усталости при переменных нагрузках.

Распределение осевой нагрузки по виткам резьбы

Осевая нагрузка по виткам резьбы гайки распределяется неравномерно из-за неблагоприятного сочетания деформаций винта и гайки (витки в наиболее растянутой части винта взаимодействуют с витками наиболее сжатой части гайки).
Статически неопределимая задача о распределении нагрузки по виткам прямоугольной резьбы гайки с 10 витками была решена профессором Н. Е. Жуковским в 1902 году.

Первый виток передает около 34% всей нагрузки, второй – около 23%, а десятый – меньше 1%. Отсюда следует, что нет смысла применять в крепежном соединении слишком высокие гайки. Стандартом предусмотрена высота гайки 0,8d для нормальных и 0,5d для низких гаек, используемых в малонагруженных соединениях.

Для выравнивания нагрузки в резьбе применяют специальные гайки, что особенно важно в соединениях, работающих при циклических нагрузках.

Резьба метрическая

Мет­рическая резьба (рис. 120). Основным типом крепежной резьбы в России является метрическая резь­ба с углом треугольного профиля а равным 60°. Размеры ее элементов задаются в миллиметрах.

Это основной вид крепежной резьбы, предназначенной для соединения деталей непосредственно друг с другом или с помощью стандартных изделий, имеющих метрическую резьбу, таких как болты, винты, шпильки, гайки.

Согласно ГОСТ 8724-81 метрические резьбы выполняются с крупным и мелким шагом на поверхностях диаметров от 1 до 68 мм - свыше 68 мм резьба имеет только мелкий шаг, при чем мелкий шаг резьбы может быть разным для одного и того же диаметра, а крупный имеет только одно значение. Крупный шаг в условном обозначении резьбы не указывается. Например: для резьбы диаметром 10 мм крупный шаг резьбы равен 1,5 мм, мелкий - 1,25; 1; 0,75; 0,5 мм.

Согласно ГОСТ 8724-81 метричес­кая резьба для диаметров от 1 до 600 мм делится на два типа: с крупным шагом (для диаметров от 1 до 68 мм) и с мелким шагом (для диаметров от 1 до 600 мм).

Резьба с крупным шагом применя­ется в соединениях, подвергающихся ударным нагрузкам. Резьба с мелким шагом - в соединениях деталей с тонкими стенками и для получения герметичного соединения. Кроме то­го, мелкая резьба широко применя­ется в регулировочных и установоч­ных винтах и гайках, так как с ее по­мощью легче осуществить точную ре­гулировку.

При проектировании новых ма­шин применяется только метричес­кая резьба.

Обозначается метрическая резьба буквой М:

· M16, М42, М64 – с крупным шагом

· М16×0,5; М42×2; М64×3 – с мелким шагом

· М42×3 (Р1) – это означает, что резьба многозаходная с диаметром 42 мм, шагом 1 мм и её ход составляет 3 мм (трёхзаходная)

· M14LH, M40×2LH, M42×3(P1)LH – если нужно обозначить левую резьбу, то после условного обозначения ставят буквы LH

Как определить шаг метрической резьбы

· самый простой способ ― измерить длину десяти витков и разделить на 10.

· можно воспользоваться специальным инструментом ― резьбомером метрическим.

Резьба дюймовая

В настоящее время не существует стандарт, регла­ментирующий основные размеры дюймовой резьбы. Ранее существовавший ОСТ НКТП 1260 отменен, и применение дюймовой резьбы в новых разработках не допускается.

Это резьба треугольного про­филя с углом при вершине 55° (а равным 55°). Номинальный диа­метр дюймовой резьбы (наружный диаметр резьбы на стержне) обозна­чается в дюймах. В России дюймо­вая резьба допускается только при изготовлении запасных частей к старому или импортному оборудованию и не применяется при проекти­ровании новых деталей.

Как уже упоминалось ранее, родиной стандартизованной резьбы можно считать Великобританию с её английской системой мер. Самый выдающийся английский инженер-изобретатель, озаботившийся наведением порядка с резьбовыми деталями, это Джозеф Уитворт (Joseph Whitworth ), или Джозеф Витворт, так тоже правильно. Уитворт оказался талантливым и очень деятельным инженером; настолько активным и предприимчивым, что разработанный им в 1841 году первый резьбовой стандарт BSW был утверждён к всеобщему применению на государственном уровне в 1881 году. К этому моменту резьба BSW стала самой распространенной дюймовой резьбой не только в Великобритании, но и в Европе. Плодотворный Дж. Уитворт разработал ещё целый ряд других стандартов дюймовых резьб специального применения; некоторые из них широко применяются и по сей день.

Детали, имеющие некое подобие резьбы, известны ещё со времён древнегреческого философа и математика Архимеда (Ἀρχιμήδης - с древнегреческого "главный советник") , жившего в г.Сиракузы на греческом тогда острове Сицилия. Очень редкие, единичные болты, похожие на современные, встречаются в конструкции дверных петель в домах относимых современной официальной историей к Древнему Риму. Это, вроде бы, понятно, говорят современные историки и археологи-реконструкторы: выковать или нанести другим способом вручную винтовую резьбу на деталь крайне сложно и неоправданно трудоёмко - практичнее использовать заклёпки или склейку/сварку/пайку. Собственно, болты и винты с резьбой, идентичные современным, встречаются в старинных механических часах сложной и изящной конструкции и в печатных станках происхождение которых доподлинно неизвестно, но датируемых официальными научными работниками ХV веком, что сомнительно, так как в часах много очень мелких винтов изготовить которые вручную практически невозможно, а первый резьбонарезной станок, по версии тех же официальных историков, изобретен французским умельцем Жаком Бессоном около 100 лет спустя - в 1568 году. Станок приводился в действие ножной педалью. На обрабатываемую заготовку нарезалась резьба с помощью резца, перемещающегося ходовым винтом. В станке была заложена координация поступательного движения резца и вращения заготовки, что достигались с помощью системы шкивов. Только с его появлением стало удобно и возможно широко применять разъёмные соединения "Болт+Гайка", удобство которых заключается в многократной сборке-разборке без потери функциональных качеств.

С конца XVIII века (как было ещё ранее - непонятно) резьбы больших размеров на детали наносились горячей ковкой: по горячей заготовке болта кузнецы ударяли специальным профильным ковочным штампом, молотом или другим формообразующим специальным инструментом. Нарезка более мелких резьб производилась на примитивных токарных станках. Режущие инструменты при этом мастеру приходилось удерживать вручную, поэтому получить одинаковую резьбу постоянного профиля не удавалось. Вследствие этого, болт с гайкой изготавливались парно, и к другому болту данная гайка не подошла бы ― такие резьбовые соединения хранились в свинченном состоянии вплоть до момента их применения.

Настоящий прорыв в изготовлении и применении резьбовых крепёжных деталей связан с Индустриальной революцией, начавшейся в той же последней трети XVIII века в Великобритании. Характерной чертой Индустриальной революции является стремительный рост производительных сил на базе крупной машинной индустрии. Большое количество машин требовало огромного количества крепежа для их производства. Многие известные технические изобретения того времени основаны на применении резьбовых крепежных элементов. Среди них изобретенная Джеймсом Харгривсом прядильная машина периодического прядения и хлопкоочистительная машина Эли Уитни. Также огромными потребителями резьбового крепежа стали растущие с невероятной скоростью железные дороги.

Так как первоначально широкое развитие и распространение резьбовые детали получили в Великой Британии, то и размерность параметров резьбы инженерам-изобретателям всего мира пришлось использовать английскую, довольно странную, и, похоже, что заимствованную у каких-то более ранних инженеров, существование которых очевидно (великолепные соборы стоят и сегодня), но держится в секрете. Называют систему антропомерной: мерилом в ней выступает человек, его ноги, руки, - что кажется нелепым: ведь все люди разные - как применять такую систему при отсутствии налаженного производства мерительного инструмента? Похоже, что авторы объяснения смысла английской системы мер попытались привязать к объяснению знаменитое изречение: "Человек есть мера всего" - одну из надписей на фасаде при входе в храм Аполлона в Дельфах.

Североамериканские Соединённые Государства до конца XVIII века находились в колониальном владении Великой Британии и, поэтому, тоже использовали английскую систему мер.

Базовой единицей английской системы мер является ДЮЙМ . Официальная версия происхождения данной единицы измерения и её названия утверждает, что дюйм (от голландского слова duim - большой палец) - ширина большого пальца взрослого мужчины - опять же, смешно: пальцы у всех разные, а имя и фамилия эталонного мужика не сообщается.

(официальная иллюстрация - должна быть рука, мягко говоря, немаленького мужчины)

По другой версии дюйм происходит от римской единицы меры унция (uncia) , которая была одновременно единицей измерения длины, площади, объёма и веса. Это скорее не универсальная мера, а дробная пропорция каждой из единичных мер, как половина или четверть. В каждой из этих единичных мер унция составляла 1/12 часть большей единицы измерения: длины (1/12 фута), площади (1/12 югера), объёма (1/12 секстария), веса (1/12 либры). Унция дня - это час, а унция года - это месяц.

Получается, если дюйм - это 1/12 фута (в переводе с английского "ступни"), то, исходя из сегодняшнего значения дюйма, ступня должна быть около 30 см длиною, и тогда дюйм получится около 2,5 см. И снова: кем был тот эталонный мужик со "стандартной" ступнёй? История умалчивает.

В какой-то момент основным был признан английский дюйм . Так как многие страны мира были вынуждены в конце ХVIII - начале ХIХ века подчиняться англо-голландскому мировому управлению, то во многих странах были навязаны свои местные "Дюймы", каждый из которых немного отличался по размеру от английского (венский, баварский, прусский, курляндский, рижский, французский и др.). Однако наиболее распространённым всегда являлся английский дюйм , который со временем практически вытеснил все прочие из обихода. Для его обозначения используется двойной (иногда встречается и одинарный) штрих, как в обозначении угловых секунд (), без пробела за числовым значением, например: 2(2 дюйма).

На сегодняшний день 1 английский дюйм (далее просто дюйм ) = 25,4 мм .

Критическая проблема, которую не удавалось решить в крепеже вплоть до начала XIX века, ― это отсутствие единообразия среди резьб, нарезаемых на болтах и гайках в разных странах и даже на разных заводах в пределах одной страны.

Вышеупомянутый американский изобретатель хлопкоочистительной машины Эли Уитни высказал еще одну важную идею ― о взаимозаменяемости частей в машинах. Жизненную необходимость воплощения этой идеи он продемонстрировал в 1801 году в Вашингтоне. Перед глазами присутствующих, среди которых находились президент Джон Адамc и вице-президент Томас Джефферсон, Уитни разложил на столе десять одинаковых кучек деталей мушкетов. В каждой кучке находилось по десять деталей. Взяв наугад по одной разной детали из каждой кучки, Уитни быстро собрал один готовый мушкет. Идея была настолько простой и удобной, что вскоре была заимствована многими инженерами и изобретателями во всем мире. На этой идее взаимозаменяемости Э.Уитни, собственно, и построены все действующие на сегодняшний день технические стандарты ГОСТ, ДСТУ, DIN, ISO и другие.

В то же время, в Англии (Великобритании), ведшей постоянное техническое и технологическое соперничество с Францией, как непосредственно, так и на территории своих колоний, давно вынашивалась идея всячески воспрепятствовать продвижению производственного развития и продвижению армии Франции в случае возможного нападения на Англию или английские колонии. Навязывание французам, и всем остальным недругам британской короны, какой-то другой (недюймовой) системы мер при изготовлении деталей машин и механизмов, а в том числе и крепежа, позволило бы Англии "вставить палки в колёса" всемирному распространению только что принятой системы дюймовой взаимозаменяемости и значительно сдержать техническое и технологическое развитие Франции и других своих мировых конкурентов; сделать невозможным ремонт и сборку английской техники и оружия с использованием французских или других неанглийских запчастей. Осуществление этого плана стало возможно после организации Великой Французской Революции под непосредственным руководством английской резидентуры во Франции. Одним из результатов Великой Французской Революции было скорое введение новой метрической системы мер, получившей широкое распространение в конце XVIII ― начале XIX века во Франции. В России метрическая система мер была введена усилиями Дмитрия Ивановича Менделеева, который заменил "Депо образцовых гирь и весов Российской Империи" на "Главную Палату Мер и Весов", удалив таким образом старорусские меры из всеобщего обращения. А получила широкое распространение метрическая система в России,- и можно считать это просто совпадением, ― как и во Франции, после Революции ― Октябрьской.

Основа метрической системы ― МЕТР (считается, что от греческого "мЭ тро"- мера). В чертежах, в документации и в обозначениях резьбовых изделий принято приводить все размеры в миллиметрах (мм).

Авторы новой системы мер условились, что 1 метр = 1000 мм .

Впоследствии, Наполеону, объединившему почти всю Европу, удалось распространить метрическую систему в подчинённых странах. Наполеон не захватывал Великобританию, и англичане продолжают использовать чуждую для остальных европейцев дюймовую систему мер, разделив таким образом сферы влияния и протектората в технико-технологическом укладе мирового сообщества. Такую же позицию занимают и американцы (тоже бывшие англичане). Сами американцы и англичане называют свою систему мер "Imperial" (имперская), а совсем не "дюймовая", как её называем мы. Вместе с американцами "имперскую" систему мер используют и другие "британские колониальные государства": Япония, Канада, Австралия, Новая Зеландия и др. Так что, Британская Империя исчезла только географически, и сегодня провинции Империи продолжают использовать "имперскую" систему мер, а криптоколонии Империи используют метрическую систему мер.

Метрическую систему мер создавали передовые умы того времени, собранные под флагом Великой Французской Революции (всем нам со школы известные учёные Французской академии Наук: Шарль Огюстен де Кулон, Жозеф Луи Лагранж, Пьер-Симон Лаплас, Гаспар Монж, Жан-Шарль де Борд и др.), поэтому всё в этой системе выстроили просто, логично, удобно и подчинённо целым круглым числам. Ну, разве что разбивка времени на секунды, минуты и часы,― досталась нам от древних шумеров с их шестидесятеричной системой счисления,― вносит некоторую нестройность в метрическую систему мер. Или, например, деление круга на 360 градусов. Отголоски шумерской системы счисления сохранились и в делении суток на 24 часа, года на 12 месяцев, и в существовании дюжины как меры количества, а также и в делении фута на 12 дюймов, так как и дюймовая система мер опиралась на гораздо более древнюю шумерскую.

Как ни бился математик-инженер Жан-Шарль де Борд с другими академиками за логичную красоту чисел, чтобы в минуте было 100 секунд, в часе 100 минут, а в сутках 10 часов (даже удалось ввести в обращение новое времяисчисление), но, в итоге, так ничего из этого и не вышло. Удивительные часы с двухстандартным переходным циферблатом приведены на фото.

Вполне логичным представляется создание простейшего размерного ряда метрических резьб с шагом, скажем, 5 мм: ... М5; М10; М15; М20 ... М40 ... М50 ...и т.д. Но! Так как машины и механизмы, уже существовавшие на момент создания метрической системы мер, были привязаны своими габаритами и конфигурацией к дюймовым размерам, то это вызвало необходимость приспосабливаться к существующим присоединительным размерам и габаритам. Отсюда появляются, на первый взгляд, "странные" размеры резьбы: М12 (что, практически, 1/2"- полдюйма), М24 (заменяет резьбу 1"), М36 (это 1 1/2"- полтора дюйма) и т.д.

Международная классификация резьб

На сегодняшний день приняты следующие основные международные стандарты резьбы (перечень далеко не полный ― есть также большое количество неосновных и специальных стандартов резьбы, которые международно приняты к применению):

В настоящее время в зарубежной технике наибольшее распространение получил стандарт резьбы метрический ISO DIN 13:1988 (первая строка в таблице) ― этим стандартом пользуемся и мы (ГОСТ 24705-2004 и ДСТУ ГОСТ 16093:2018 на метрические резьбы являются его родными сыновьями). Однако, в мире используются и другие стандарты.

Причины, по которым международные стандарты резьбы отличаются между собой, уже описаны выше. Также можно добавить, что некоторые стандарты резьб являются специальными, и применение таких резьб ограничено областью применения деталей с этой резьбой (например, трубная резьба, придуманная английским инженером-изобретателем Уитвортом, BSP применяется только в деталях соединений трубопроводов).

Резьба метрическая цилиндрическая

Метрические резьбы, применяемые для крепёжных деталей бывают различные, но самые распространённые ― это резьбы метрические цилиндрические (т.е. деталь с резьбой имеет цилиндрическую форму и диаметр резьбы не изменяется по длине детали) с треугольным профилем с углом профиля 60 0


Далее речь пойдёт только о самой распространённой метрической резьбе ― цилиндрической. В метрической цилиндрической резьбе для обозначение размера резьбы свинчиваемых деталей берётся наружный диаметр резьбы болта. Измерить точно резьбу гайки при этом затруднительно. Для того, чтобы узнать диаметр резьбы гайки, необходимо измерить наружный диаметр соответствующего этой гайке болта (на который она навинчивается).

М ― наружный диаметр резьбы болта (гайки) ― обозначение размера резьбы

Н ― высота профиля метрической резьбы резьбы, Н=0,866025404×Р

Р ― шаг резьбы (расстояние между вершинами профиля резьбы)

d СР - средний диаметр резьбы

d ВН - внутренний диаметр резьбы гайки

d В - внутренний диаметр резьбы болта

Обозначается метрическая резьба латинской буквой М . Резьба может быть крупной, мелкой и особо мелкой. За нормальную принята крупная резьба:

  • если шаг резьбы крупный, то размер шага не пишется: М2; М16 ― для гайки; М24х90; М90х850 ― для болта;
  • если шаг резьбы мелкий, то размер шага пишется в обозначении через символ х : М8х1; М16х1,5 ― для гайки; М20х1,5х65; М42х2х330 ― для болта;

Резьба метрическая цилиндрическая может иметь правое и левое направление. Базовым считается правое направление: оно по умолчанию не обозначается. Если направление резьбы левое, то после обозначения ставится символ LH : М16LH; М22х1,5LH ― для гайки; М27х2LHх400; М36LHх220 ― для болта;

Точность и поле допуска метрической резьбы

Метрическая цилиндрическая резьба различается по точности изготовления и делится на классы точности. Классы точности и поля допусков метрической цилиндрической резьбы приведены в таблице:

Класс точности Поле допуска для резьбы
наружной: болт, винт, шпилька внутренней: гайка
Точный 4g 4h 4H 5H
Средний 6d 6e 6f 6g 6h 6G 6H
Грубый 8g 8h 7G 7H

Наиболее распространен класс точности средний с полями допуска резьбы: 6g ― для болта (винта, шпильки) и 6Н ― для гайки; такие допуски легко выдерживаются в производстве при изготовлении резьбы методом накатки на резьбонакатных станках. Обозначается через тире после размера резьбы: М8-6gx20; M20x1,5-6gx55 ― для болта; М10-6Н; М30х2LH-6Н ― для гайки.

Диаметры и шаги метрической резьбы

Все диаметры метрической резьбы поделены на три условных ряда по степени предпочтения и применяемости (см. таблицу далее): наиболее распространены резьбы из 1-го ряда, наименее рекомендуемые к использованию резьбы метрические из 3-го ряда (они имеют очень узкую область использования и редко встречаются в машиностроении). Таким образом, чтобы максимально избежать проблем с крепёжными резьбовыми комплектующими при сборке, эксплуатации и последующем ремонте, инженерам-конструкторам рекомендуется закладывать в конструкцию машин и механизмов резьбы из 1-го ряда. Также каждому диаметру метрической резьбы соответствует несколько шагов: крупный ― основной шаг для применения; мелкий ― дополнительный шаг для регулировочного и высокопрочного крепежа; особо мелкие ― наименее рекомендуемые к применению. В свою очередь, инструментальная промышленность выпускает в наибольшем количестве резьбонарезной инструмент для метрической резьбы из 1-го ряда с крупным шагом резьбы. А наиболее труднонаходимые, порой почти эксклюзивные и дорогие, резьбонарезающие инструменты для резьбы из 3-го ряда с мелким и особо мелким шагом.

Как определить шаг метрической резьбы

  • самый простой способ ― измерить длину десяти витков и разделить на 10.

  • можно воспользоваться специальным инструментом ― резьбомером метрическим.

В следующей таблице приведен перечень диаметров метрической резьбы и соответствующих каждому диаметру шагов резьбы.



Дюймовые резьбы

Как уже упоминалось ранее, родиной стандартизованной резьбы можно считать Великобританию с её английской системой мер. Самый выдающийся английский инженер-изобретатель, озаботившийся наведением порядка с резьбовыми деталями, это Джозеф Уитворт (Joseph Whitworth ), или Джозеф Витворт, так тоже правильно. Уитворт оказался талантливым и очень деятельным инженером; настолько активным и предприимчивым, что разработанный им в 1841 году первый резьбовой стандарт BSW был утверждён к всеобщему применению на государственном уровне в 1881 году. К этому моменту резьба BSW стала самой распространенной дюймовой резьбой не только в Великобритании, но и в Европе. Плодотворный Дж. Уитворт разработал ещё целый ряд других стандартов дюймовых резьб специального применения; некоторые из них широко применяются и по сей день.

Поначалу резьба BSW нашла применение и в Соединённых Штатах Америки. Однако интенсивная индустриализация в США требовала много резьбового крепежа, а резьба Уитворта была технически сложной при массовом производстве, как и металлорежущие инструменты для неё. В 1864 году американский промышленник-производитель металлорежущего инструмента и крепежа Уильям Селлерс предложил упростить резьбу BSW путём изменения угла и формы профиля резьбы, что приводило к удешевлению и упрощению производства резьбового крепежа. Институт Франклина принял систему У. Селлерса и рекомендовал её в качестве государственного стандарта. К концу ХIX века американская дюймовая резьба распространилась и в Европе, и даже частично вытеснила английскую, благодаря более низкой себестоимости производства крепежа. Несовместимость резьб Уитворта и Селлерса стала причиной многих технических осложнений в начале ХХ века. В результате, в 1948 году приняли и утвердили международную Унифицированную систему дюймовых резьб, которая включала элементы как резьбы Уитворта, так и резьбы Селлерса ― самые основные дюймовые резьбы этой системы UNC и UNF актуальны и сейчас.

Как разобраться с дюймовыми резьбами

Для человека, воспитанного в метрической системе мер, проще всего разобраться с дюймовыми резьбами, измерив штангенциркулем в миллиметрах наружный диаметр резьбы, внутренний диаметр и шаг резьбы (измеряется в числе витков на дюйм). Измерять необходимо с точностью до десятых и сотых долей миллиметра. Затем необходимо по справочным таблицам дюймовых резьб (основные приводятся далее) подобрать совпадение полученной комбинации. Таким способом, при наличии справочных таблиц и штангенциркуля, можно легко разобраться с идентификацией того или иного дюймового крепежа, как гаек, так и болтов, винтов.

Как определить шаг дюймовой резьбы

Как мы уже знаем, 1 дюйм достаточно неудобная и сравнительно большая величина. Поэтому сэру Джозефу Уитворту показалось затруднительным точно измерить в долях дюйма расстояние между вершинами профиля резьбы (как мы это делаем с метрической резьбой), и, он решил, что самым простым и достаточно точным параметром шага резьбы будет не расстояние между вершинами профиля, а количество витков резьбы, которое помещается в 1 дюйм длины резьбы ― витки можно посчитать даже визуально.

Так по сей день и определяют шаг любой дюймовой резьбы ― в количестве витков на дюйм.

  • Значит, первый способ ― приложить к резьбе дюймовую линейку (подойдёт и обычная метрическая с отметкой на 25,4 мм) и посчитать количество витков, которое помещается в 1 дюйм (25,4 мм). На примере показана дюймовая резьба с шагом 18 витков на дюйм.

  • второй способ ― можно воспользоваться специальным инструментом ― резьбомером для дюймовой резьбы (правда, необходимо знать какую дюймовую резьбу Вы собираетесь измерить, так как английская и американская дюймовые резьбы отличаются по углу профиля резьбы: 55° и 60°)

Дюймовая английская цилиндрическая резьба Уитворта BSW (British Standard Whitworth)

Это цилиндрическая дюймовая резьба с крупным шагом, предусмотренная Дж. Уитвортом для общего применения. Идея Дж. Уитворта состояла в том, что он предлагал раз и навсегда закрепить для болтов и винтов одного типа и размера строго определённые параметры резьбы: профиль, шаг и высота профиля резьбы. Основываясь на собственном опыте и умозаключениях, Дж. Уитворт настаивал, чтобы угол профиля резьбы (угол между сторонами соседних витков) был равен 55°. Вершины витков резьбы и основания впадин резьбы должны быть закруглены на 1/6 высоты исходного профиля ― таким образом Уитворт хотел достичь плотности (герметичности) резьбы и повысить её прочность, увеличив площадь контакта болта и гайки. Шаг резьбы должен определяться числом витков резьбы на один дюйм длины резьбы; при этом число витков резьбы на 1 дюйм не должно быть постоянным для всех диаметров резьбы, а должно зависеть от диаметра резьбы болта или винта: чем меньше диаметр, тем больше витков резьбы на дюйм, чем больше диаметр резьбы, тем, соответственно, меньше число витков на дюйм длины резьбы.

W , после которой ставится размер наружного диаметра болта, измеренный в дюймах:

  • обозначение гайки: W 1/4” (гайка с дюймовой резьбой Уитворта одна четвёртая дюйма);
  • обозначение болта (винта): W 3/4” х1 1/2” (болт с дюймовой резьбой Уитворта три четвёртых дюйма длиною полтора (один и одна вторая) дюйма).

BSW "Диаметр сверления, мм"

Несмотря на то, что все провинции Британской Империи уже давно пользуются унифицированной дюймовой резьбой UNC, заменившей BSW, в метрополии англичане и по сей день не отказались от устаревшей резьбы Уитворта.

Дюймовая английская цилиндрическая мелкая резьба Уитворта BSF (British Standard Whitworth Fine Thread)

Дюймовая цилиндрическая мелкая резьба BSF была очень распространена до 50-х годов ХХ века, наряду с резьбой BSW . Применялась для изготовления точного и высокопрочного крепежа. Впоследствии ей на смену пришла унифицированная дюймовая мелкая резьба UNF. Хотя, англичане пользуются резьбой BSF и в наше время.

Обозначается латинскими буквами BSF , после которых ставится размер наружного диаметра болта, измеренный в дюймах:

  • обозначение гайки: BSF 1/4” (гайка с дюймовой мелкой резьбой Уитворта одна четвёртая дюйма);
  • обозначение болта (винта): BSF 3/4” х1 1/2” (болт с дюймовой мелкой резьбой Уитворта три четвёртых дюйма длиною полтора (один и одна вторая) дюйма).

Параметры в миллиметрах резьбы BSF приведены в следующей таблице (для гаек ― смотрите столбец "Диаметр сверления, мм" ― это диаметр внутреннего отверстия гайки для нарезания резьбы).

Дюймовая английская цилиндрическая несамоуплотняющаяся трубная резьба Уитворта BSP (British Standard Whitworth Pipe Thread)

Стоит обязательно упомянуть трубную резьбу Уитворта, так как она с момента изобретения и до настоящего времени имеет широчайшее применение во всём мире для деталей резьбовых соединений трубопроводов: сгонов, преходов, фитингов, муфт, двойников, тройников, и др.; а также для трубопроводной арматуры: краны, вентили и др.

На постсоветском пространстве действует адаптированный советскими инженерами стандарт трубной цилиндрической резьбы Уитворта BSP ― это резьба по ГОСТ 6357-81 .

Обозначается латинской буквой G , после которой ставится числовое значение условного прохода трубы в дюймах (это число не является ни наружным, ни внутренним диаметром резьбы или трубы):

  • обозначение контргайки: G 1/4” (контргайка с дюймовой трубной цилиндрической резьбой Уитворта на трубу с условным проходным диаметром одна четвёртая дюйма); Та же самая контргайка в отечественном машиностроении обозначается: Ду8 (контргайка на трубу с условным проходом 8 мм)

Тут необходимо прояснить ситуацию с обозначением размера трубной резьбы BSP. Трубы обозначаются "условным проходом трубы" или "номинальным диаметром трубы", которые слабо связаны с действительными реальными размерами трубы. Например, возьмём стальную трубу 2" (двухдюймовую): измерив её внутренний диаметр и переведя в дюймы, мы с удивлением выясним, что он составляет около 2⅛ дюйма, а её наружный диаметр составит около 2⅝ дюйма ― такая вот нелепица!.

Как определить настоящий диаметр трубы?

К сожалению, не существует какой-либо формулы для перевода "трубных дюймов" в миллиметры или в "обычные" дюймы с целью узнать реальный наружный или внутренний диаметр трубы. Для определения соответствия "условного дюймового диаметра", "наружного диаметра трубы" и "диаметра трубной резьбы" необходимо пользоваться справочной литературой и нормативной документацией (стандартами).

Ниже приведена таблица, которая составлена путём объединения известных стандартов воедино (может быть, она и неполная, но сможет помочь с определением трубной резьбы BSP; для контргаек ― смотрите столбец "Диаметр сверления, мм" ― это диаметр внутреннего отверстия гайки для нарезания резьбы)

Дюймовая унифицированная цилиндрическая крупная резьба UNC (Unified National Coarse Thread)

Цилиндрическая дюймовая резьба UNC , в окончательном виде, была разработана Американским национальным институтом стандартов (ANSI / ISO ) и стала международным стандартом дюймовой резьбы с крупным шагом, и, фактически, представляет из себя воплощение технических идей американского промышленника Селлерса по усовершенствованию резьбы Уитворта. Усовершенствования, по сути, свелись к изменению угла профиля с неудобных 55° на 60° и к отказу от скруглений на вершинах профиля резьбы, ― теперь поверхность вершин стала плоской и составляет 1/8 шага резьбы. Впадины могут быть тоже плоскими, но предпочтительны скруглённые.

Резьба UNC в настоящее время является самой распространённой в мире дюймовой резьбой и рекомендуется как предпочтительная для применения.

Принятое обозначение дюймовой крупной резьбы UNC включает в себя буквенное указание типа резьбы (собственно UNC ) и номинальный диаметр резьбы в дюймах. Дополнительно в обозначении могут быть приведены: шаг резьбы, указанный через тире (TPI threads per inch число витков на дюйм ), направление (левое или правое). Дюймовые крупные резьбы UNC размером меньше, чем 1/4”, в связи с затруднениями при их измерении, принято обозначать номерами от №1 до №12, с указанием через тире шага резьбы, измеряемом в количестве витков на дюйм.

1/4” – 20UNСх2 1/2”

  • UNС - тип резьбыунифицированная дюймовая резьба с крупным шагом
  • 1/4” UNС 6,35 мм 5,35 мм )
  • 20
  • 2 1/2” 63,5 мм )

Параметры в миллиметрах резьбы UNC приведены в следующей таблице (для гаек ― смотрите столбец "Диаметр сверления, мм" ― это диаметр внутреннего отверстия гайки для нарезания резьбы).

Дюймовая унифицированная цилиндрическая мелкая резьба UNF (Unified National Fine Thread)

Резьба UNF ― цилиндрическая дюймовая резьба с мелким шагом, используемая для регулировочного и высокопрочного крепежа.

Резьба UNF , наряду с резьбой UNC, в настоящее время является самой распространённой в мире дюймовой резьбой и также рекомендуется как предпочтительная для применения в случаях, когда требуется более мелкий шаг резьбы.

Обозначение дюймовой мелкой резьбы UNF аналогично обозначению резьбы UNC и также включает в себя буквенное обозначение типа резьбы и номинальный диаметр в дюймах. Дополнительно в обозначении могут быть приведены: шаг резьбы, указанный через тире (TPI threads per inch число витков на дюйм ), направление (левое, правое). Резьбы UNF размером меньше 1/4”, в связи с затруднениями при их измерении, принято обозначать номерами, от №0 до №12, с указанием через тире шага резьбы в количестве витков на дюйм.

Например: Обозначение болта с дюймовой резьбой 1/4” – 28UNFх2 1/2”

  • UNF - тип резьбыунифицированная дюймовая резьба с мелким шагом
  • 1/4” ― обозначение диаметра резьбы (по таблице резьбы UNF , приведенной ниже, для болта наружный диаметр резьбы соответствует 6,35 мм , для гайки ― диаметр отверстия внутри гайки соответствует 5,5 мм )
  • 28 ― шаг резьбы, измеренный в количестве витков на дюйм длины резьбы (количество витков, которое помещается в 25,4 мм)
  • 2 1/2” ― длина болта в дюймах (приблизительно соответствует 63,5 мм )

Параметры в миллиметрах резьбы UNF приведены в следующей таблице (для гаек ― смотрите столбец "Диаметр сверления, мм" ― это диаметр внутреннего отверстия гайки для нарезания резьбы).

Дюймовая унифицированная цилиндрическая особо мелкая резьба UNEF (Unified National Extra Fine Thread)

Резьба UNEF ― цилиндрическая дюймовая резьба с особо мелким шагом, используемая для высокоточного крепежа и резьбовых деталей точных механизмов ― специальная дюймовая резьба.

Обозначается аналогично резьбам UNF и UNC .

Параметры в миллиметрах резьбы UNEF приведены в следующей таблице (для гаек ― смотрите столбец "Диаметр сверления, мм" ― это диаметр внутреннего отверстия гайки для нарезания резьбы).

Существуют также другие стандарты на дюймовые резьбы, но они являются специальными, узкоспециальными, редкоиспользуемыми и не рекомендуются к применению, ― поэтому приводить их и не будем.

Контроль резьбы достигается на практике разнообразными средствами измерения. Рассмотрим наиболее употребляемые.

Штангенинструменты и микрометрические инструменты являются измерительными средствами, широко применяемыми в машиностроении, поэтому приобретение навыков работы с ними обязательно. К основным штангенинструментам относятся штангенциркули .

Отсчетным устройством в штангенинструментах является линейный нониус. Это приспособление позволяет отсчитывать дробные доли интервала делений основной шкалы штангенинструмента.

Интервал деления шкалы нониуса а′ меньше, чем интервал деления основной шкалы а на величину с , называемую величиной отсчета по нониусу, если модуль нониуса γ = 1. При модуле γ = 2 деление шкалы нониуса а ′ меньше, чем два деления основной шкалы, также на величину с .

При нулевом положении нулевые штрихи основной шкалы и шкалы нониуса совпадают. При этом последний штрих шкалы нониуса совпадают с штрихом основной шкалы, определяющим длину l шкалы нониуса. При измерении шкала нониуса смещается относительно основной шкалы и по положению нулевого штриха шкалы нониуса определяют величину этого смещения, равную измеряемому размеру. Если нулевой штрих нониуса располагается между штрихами основной шкалы, то следующие за ним штрихи нониуса также занимают промежуточное положение между штрихами основной шкалы.

Ввиду того, что деления шкалы нониуса отличаются от делений основной шкалы на величину с , каждое последующее деление нониуса расположено ближе предыдущего к соответствующему штриху основной шкалы. Совпадение какого - либо k - го штриха нониуса с любым штрихом основной шкалы показывает, что расстояние нулевого штриха основной шкалы, по которому производят отсчет целых делений, равно kc.

Таким образом, отсчет измеряемой величины А по шкале с нониусом складывается из отсчета целых делений N по основной шкале и отсчета дробной части деления по шкале нониуса, т. е. A = N + kc.

Параметры нониуса и основной шкалы связаны следующими уравнениями:

с = a/n; c = γa - a′; l = n (γa - c); l = а (γn - 1), 7.1

где l - длина шкалы нониуса; n - число делений шкалы нониуса.

Приведенные формулы позволяют производить расчет нониуса и отсчеты по шкале с нониусом.

Пример. Для нониуса , изображенного на рис. 7.2, а и б, определить с и произвести отсчет, если а = 1 мм.

Основываясь на формулах (7.1), по рисунку 7.2, а определяем, что n = 10, γ = 2, l = 19 мм.

Следовательно, c = a/n = 1/10 = 0,1 мм

По рис. 7.2, б определяем отсчеты по основной шкале N = 60 мм и по нониусной ck = 0,1х5 = 0,5 мм. Общий отсчет А = N + ck = 60 + 0,5 = 60,5 мм.


Обычно при градуировании шкалы нониуса учитывается величина отсчета по шкале нониуса. Так, например, на шкале нониуса с величиной отсчета C = 0,02 мм цифра 10 обозначает “десять сотых миллиметра” и соответствует пятому делению нониуса, цифра 20 соответствует десятому делению нониуса и т.д.

На рис. 7.3 показан штангенциркуль типа ШЦ11 - с двухсторонним расположением измерительных губок 1, 2, 3, 4. Верхняя пара измерительных губок (1 и 2) предназначена для измерений отверстий, нижняя - для наружных измерений. Верхние губки расположены относительно основной шкалы и шкалы нониуса так, что при измерении внутренних размеров отсчет ведется от нуля, как и при измерении наружных размеров. Шкала нониуса - 5, винт - 6 служит для фиксирования положения подвижной губки.

Рис. 7.2 Нулевые положения шкал штангенциркуля и примеры отсчета в зависимости от модуля γ

1
2
6
3
4
5


Рис. 7.3 Штангенциркуль, тип ШЦ11

Резьбовой микрометр . Для измерения среднего диаметра наружной резьбы на стержне применяют резьбовой микрометр (рис. 7.4). Внешне он отличается от обычного только наличием измерительных вставок - конусного наконечника, вставляемого в отверстие микровинта, и призмати-ческого наконечника, помещаемого в отверстие пятки. Вставки к микрометру (рис. 7.5) изготовляются парами, каждая из которых предназначена для измерения крепежных резьб с углом профиля 60 о и 55 о и с определенным шагом. Например, одна пара вставок применяется для измерения резьбы с шагом 1 - 1,75 мм, другая - с шагом 1,75 - 2,5 мм и т.д.

После установки микрометра на ноль вставками обхватывают один виток проверяемой резьбы. Как только вставки войдут в соприкосновение с поверхностью резьбы, стопорят микрометрический винт и отсчитывают результат по шкалам микрометрической головки

Рис. 7.4 Резьбовой микрометр Рис.7.5 Вставки к микрометру

Проволочки. Проволочки служат для измерения среднего диаметра резьбы (рис. 7.6). Для этого их закладывают во впадины резьбы, а затем при помощи контактного прибора (микрометра, оптиметра и т. п.) определяют размер М. По известным значениям шага, половины угла профиля резьбы и диаметра проволочек вычисляют действительный размер среднего диаметра резьбы. Так для метрической резьбы (α/2 = 30 о) средний диаметр резьбы будет равен: d 2 = М - 3d + 0,866 × S , где d - диаметр проволочек, S - шаг резьбы.

Рис. 7.6 Проволочки для измерения среднего диаметра резьбы

Измерение среднего диаметра резьбы с помощью трех проволочек находит наибольшее применение. Этим методом пользуются не только для измерения крепежных резьб, но и кинематических (ходовых).

Резьбовые кольца жесткие . Для измерения наружной цилиндрической правой и левой резьбы применяют резьбовые кольца жесткие (рис. 7.7). Так они называются в отличие от регулируемых резьбовых колец. Проверка заключается в свинчивании резьбового кольца с проверяемой деталью. Резьбу проверяют двумя кольцами: проходным (ПР), изготовленным с резьбой полного профиля по всей длине кольца, и непроходным (НЕ), имеющим резьбу неполного укороченного профиля с 2 - 3,5 витками.

Проходное резьбовое кольцо должно свободно свинчиваться с проверяемой деталью и проходить без заклинивания по всей длине нарезки. Непроходные резьбовые кольца не должны навинчиваться на деталь более чем 3,5 оборота.

Для отличия непроходное кольцо имеет снаружи кольцевую выточку. Все кольца маркируются с указанием предельного калибра (НЕ, ПР), размера и типа резьбы.

Резьбовые калибры. Для измерения внутренней цилиндрической правой и левой резьбы применяются резьбовые калибры (пробки, рис. 7.8) со вставками и насадками; проходные (ПР) и непроходные (НЕ). Проверяют и измеряют резьбы резьбовыми пробками так же, как и резьбовыми кольцами.

Рисунок 7.7 - Резьбовые кольца жесткие

Наружная резьба диаметром от 6 до 52 мм контролируется иногда резьбовыми роликовыми скобками других конструкций. Конические внутренние и наружные, правые и левые резьбы от 1/8” до 2” измеряют специальными калибрами.

Резьбомеры. Для измерения шага резьбы применяют резьбомеры - наборы шаблонов (тонких стальных пластинок) (рис. 7.9), измерительная часть которых представляет собой профиль стандартной резьбы определенного шага или с определенным числом ниток на дюйм для подсчета шага.

Рис. 7.8 Резьбовые калибры

Рис. 7.9 Резьбомеры

Изготавливают резьбомеры двух типов: для метрической резьбы с шагом (в мм ): 0,4; 0,45; 0,5; 0,6; 0,7; 0,75; 0,8; 1; 1,25; 1,5; 1,75; 2; 2,5; 3; 3,5; 4; 4,5; 5; 5,5; 6 и для дюймовой и трубной резьбы с числом ниток (на один дюйм): 28; 20; 19; 18; 16; 14; 12; 11; 10; 9; 8; 7; 6; 5; 4,5; 4.

Внешне резьбомеры - шаблоны отличаются тем, что на резьбомерах для метрической резьбы выбито клеймо “М60 о ”, а на резьбомерах для дюймовой и трубной резьбы выбито клеймо “Д55 о ”.

При определении резьбы с натуры, замерив отдельные параметры, получают приближенные данные, с помощью которых по таблицам резьбы в стандартах уточняют ее тип и размер. Необходимость в определении резьбы с натуры может возникнуть в двух случаях: 1) при замене частично изношенной или полностью вышедшей из строя нестандартной резьбовой детали; 2) при монтаже и ремонтных работах, когда по каким - либо причинам неизвестен размер резьбы, а в ходе работы требуется установить новое изделие или узел с подсоединением на резьбе.

На точность измерения при определении резьбы с натуры влияет много факторов, основные из них следующие:

а) процент изношенности и загрязненности детали;

б) удобство измерения детали;

в) вид, качество и чистота измерительного инструмента;

г) навыки пользования инструментом, правильная установка его без смещений и перекосов;

д) соблюдение температурного режима измерения.

Для более точного определения рекомендуется сделать последовательно три измерения одного и того же размера и как окончательный результат взять их среднее значение. Оценка точности измерения в различных случаях может колебаться от 0,5 до 0,25 мм.

Поскольку в производственной, а тем более учебной практике наиболее часто при выполнении эскизов с натуры пользуются резьбомером, рассмотрим как это измерение выполняется.

Для измерения шага резьбы резьбомером подбирают шаблон - пластинку, зубцы которой совпадают со впадинами измеряемой резьбы (рис. 7.10). Затем читают указанный на пластинке шаг (или число ниток на дюйм). При определении шага по дюймовому резьбомеру делят дюйм (25,4 мм) на количество ниток, указанное на шаблоне, Наружный диаметр резьбы d на стержне или внутренний диаметр резьбы D 1 в отверстии измеряют обычным путем штангенциркулем (рис. 7.11) (располагая мерительные губки штангенциркуля в осевой диаметральной плоскости) с торца стержня или отверстия. Имея эти исходные данные, подбирают точное значение резьбы по таблицам стандартных резьб.

При отсутствии резьбомера шаг резьбы (или число ниток на дюйм) может быть определен с помощью оттиска на бумаге. Для этого резьбовую часть детали обжимают листком чистой бумаги, с тем чтобы получить на ней оттиски (отпечатки) ниток резьбы, т.е. несколько шагов (желательно не менее 10) (рис. 7.12). Затем по оттиску измеряют расстояние L между крайними достаточно четкими рисками. Сосчитав число шагов n на длине L (при этом надо помнить, что n на единицу меньше числа рисок, так как средняя оценка величины шага данной резьбы определяется не из количества рисок, а из величины расстояния меду ними), определяем шаг.

Рис. 7.10 Измерение шага резьбы шаблон - пластинкой

Пример: оттиск дал 10 четких рисок (т.е. 9 шагов) общей длиной 13,5 мм. Наружный диаметр резьбы при измерении - 14 мм. Определяем шаг: P = 13,5: 9 =1,5 мм. По таблице стандартных резьб в стандарте ГОСТ8724 - 81 находим резьбу: М14 ´ 1,5, т.е. метрическая резьба 2-го ряда с диаметром 14 мм и мелким шагом 1,5 мм.

В отверстиях определение резьбы этим способом возможно только при достаточно больших диаметрах. Вообще же резьбу отверстий следует измерять на тех деталях, которые ввинчиваются в данное отверстие.

На практике определение резьбы описанным способом облегчается тем, что для наиболее употребительных диаметров шаги метрической резьбы выражаются или целым числом миллиметров, или числом,кратным 0,5 мм или 0,25 мм.

Диаметры метрической резьбы, начиная с 6 мм, всегда измеряются целым числом миллиметров.

У дюймовой резьбы диаметр и шаг могут быть с достаточным приближением выражены только в тысячных долях миллиметра, но число ниток на дюйм всегда число целое.

При измерении метрической и дюймовой резьбы может оказаться, что шаблоны-гребенки не укладываются между витками резьбы того или иного изделия, а замеряемый диаметр (наружный или внутренний) даже с грубой прикидкой на изношенность не соответствует размерам, установленным стандартом. Такое несоответствие шага и диаметра стандарту указывает на то, что резьба у данного изделия нестандартная. В этом случае на чертеже должны быть обозначены шаг резьбы P ,замеренный вышеприведенным или другим способом с достаточной точностью, наружный и внутренний диаметры, общие для болта и гайки.

При замере одного диаметра резьбы (наружного или внутреннего) другой может быть определен подсчетом. Как известно, размер Н - радиально измеренная высота основного расчетного профиля, общего для болта и гайки, может быть представлена в выражении через шаг P ,как через модуль.

Для метрической резьбы: H = 0,86603 Р .

Для дюймовой: H = 0,6403 P

Диаметр d 1 для стержня определяем по формуле:

d 1 = d - 2х0,86603 P - для метрической резьбы,

d 1 = d - 2х0,6403 Р - для дюймовой резьбы.

Таким же образом можно определить необходимые параметры у специальных ходовых винтов: трапецеидального, упорного, круглого и прямоугольного профиля.

  • Первое число означает основной диаметр винта.

    • За границей, в США, диаметр резьбы измеряют в дюймах, линиях, точках и милах. Существуют диаметры от #0 до #10, где #0 самый маленьких размер (6 точек), а #10 самый большой (1 линия, 9 точек). Диаметры #12 и #14 тоже встречаются, но обычно используются только в старом оборудовании, которое требует ремонта и реставрации. Номер #14 приближается к 1/4 дюйма в диаметре, но не ровно 1/4 дюйма. Начиная с #1 резьбы (7 точек, 3 мила) диамeтр увиличивается на 13 мил, таким образом, диаметр резьбы #2 - 0,086 дюйма, #3 - 0,099 дюйма и так далее. Для винтов больше чем #10, первым числом указывают диаметр в дюймах. Так винт 1/4-20 в диаметре составляет четверть дюйма.
    • Если резьба метрическая, например M3.5, первое число после M означает основной диаметр в миллиметрах.
  • Второе число показывает расстояние между двумя одноименными элементами резьбы. Это число выражает шаг, например между двумя витками. Шаг измеряется в миллиметрах, долях дюйма или числом ниток на дюйм.

    • В США применяют число ниток на дюйм. Например винт 1/4-20 имеет 20 ниток на дюйм.
    • В метрической системе шаг между витками измеряется в миллиметрах. Так, у винта M2 x 0.4 расстояние между витками составляет 0.4mm. Несмотря на то, что в метрической системе существует более двух стандартов шага, шаг резьбы зачастую не указывают; поэтому неплохо бы взять с собой образец.
      • Основные метрические стандарты винтов бывают по системе DIN и JIS. Эти стандарты близко связаны между собой, и местами идентичны, но болт JIS M8 может не подойти вместо болта DIN M8. Еще есть американский ANSI метрический стандарт.
  • Прочтите длину винта после x . Длина винта измеряется от конца винта до начала головки, как показано на иллюстрации. Учтите, что длина винтов с потайной головкой измеряется вместе с ней.

    • Длина американских винтов измеряется в дюймах. Так, длина винта 1/4-20 x 3/4 составляет три четверти дюйма, или семь с половиной линий. Длину выражают или простыми дробями, или десятичными.
    • Длина метрических винтов указывается в миллиметрах.
  • Прочая маркировка.

    • Также применяется класс посадки, свободно или туго будет закручиваться деталь. В основном используются классы 2A или 2B. "А" указывает на то, что это наружная резьба, а "B", что это внутренняя, как на гайках. Число "2" указывает на среднюю тугость закручивания, другие числа (1 или 3) встречаются значительно реже.
    • Бывает маркировка UNC, UNF или UNEF. По этим стандартам шаг резьбы отличается. Чаще всего применяется UNC.
    • Внутренний диаметр. Равен диаметру отверстия заготовки гайки перед нарезкой резьбы. В большинстве случаев указывается наружный диаметр соответствующей вставляющейся детали.
  • При выполнении любых столярных или слесарных работ нужно знать, как измерять штангенциркулем, а также уметь им пользоваться. Этот распространенный универсальный метрический инструмент применяется для снятия внутренних и внешних линейных размеров с детали. Штангенциркуль позволяет произвести измерение диаметров (внутренних и внешних) и глубину отверстия.

    Штангенциркуль устроен просто, работать им легко и удобно. Любая его модификация состоит из следующих конструктивных элементов:

    Разновидности и маркировка

    По конструкции и своему назначению штангенциркули бывают следующих видов:

    • ШЦ-1. Рабочие губки размещены с 2 сторон. Применяется для проведения наружных и внутренних измерений. Оснащены стержнем для измерения уступов и глубин. Удобны для разметочных работ.
    • ШЦ-2. Губки для внутренних и наружных замеров совмещены и имеют одинаковый размер. При этом плоские рабочие поверхности располагаются внутри, а цилиндрические повернуты наружу. С противоположной стороны от штанги находятся разметочные остро заточенные кромки. Дополнительно прибор оснащен рамкой микрометрической подачи, с помощью которой можно производить более точные измерения.
    • ШЦ-3. Одностороннее размещение измерительных губок. Специфика этих моделей в том, что они предназначены для больших замеров.

    Штангенциркули делятся по способу снятия результата замеров:


    Тип индикатора определяет, с какой точностью штангенциркуль снимает показания. Нониусные приборы считаются менее точными, но в использовании они просты и надежны. Циферблатный инструмент точнее и удобнее, но зубчатая рейка может загрязняться от деталей. Цифровой штангенциркуль позволяет производить замеры с высокой точностью, но зависит от температурных перепадов.

    Правила эксплуатации штангенциркуля

    Прежде чем приступать к замерам, нужно проверить инструмент. Для этого губки ШЦ сводят вместе и смотрят на просвет, нет ли между ними зазора. Нужно проверить и совпадение шкал на нуле. Прибор должен быть чистым, особенно подвижные части. Результат замера будет более точным, т. к. ржавчина и грязь сильно увеличивают погрешность измерения.

    С помощью ШЦ можно определить размеры внешнего и внутреннего диаметра, толщину поверхности и глубину выемки или уступа. Во время проведения работ нужно знать, в каком положении должны находиться губки штангенциркуля при измерении и как правильно снять показания.

    Как правильно измерять штангенциркулем наружные поверхности

    Для снятия наружных размеров (толщины) нужно развести губки штангенциркуля, поместить между ними измеряемый предмет, затем сдвинуть губки и слегка сжать. Измерительные кромки должны располагаться параллельно поверхности заготовки. Деление на основной шкале штангенциркуля, совместившееся с нулевой риской дополнительной шкалы, будет обозначать целые миллиметры. Риска, которая на нониусе совпадет с риской на штанге, определяет десятые доли миллиметра.

    Аналогичным образом измеряется внешний диаметр трубы, при этом губки должны касаться диаметрально противоположных точек на наружном диаметре изделия. Таким же образом измеряются и другие детали, имеющие круглое сечение: кабель, размер болта и пр.

    Как измерить штангенциркулем внутренний диаметр детали

    Для замера внутреннего диаметра требуется сдвинуть штанги губки в нулевое положение и ввести в отверстие параллельно измеряемой плоскости. Затем их нужно развести до упора, при этом стараясь добиться максимального значения показаний. Этим же способом штангенциркулем проверяют расстояние между параллельными плоскостями, только стараются получить минимальные показания шкалы. Диаметр отверстия от сверла небольшого диаметра замерить не удастся, все определяется толщиной губок.

    Определение глубины

    Воспользовавшись выдвижной линейкой глубиномера штангенциркуля можно замерить глубину отверстия или высоту уступа. Для этого выдвигают глубиномер и опускают его в отверстие до соприкосновения с дном. Он должен располагаться параллельно поверхностям объекта. Затем торец штанги прибора двигают обратно на измерительную планку до упора в верхний край измеряемой детали.

    Замер резьбовых соединений

    Штангенциркулем можно осуществлять замеры резьбовых соединений. Диаметры резьбы могут быть измерены по выступам. Болт зажимается между губок вертикально, затем снимаются показания.

    Для того чтобы замерить штангелем шаг резьбы, нужно произвести замер внешнего диаметра и высоту стержня и подсчитать количество витков резьбы. Шаг резьбы получится в результате деления длины стержня на число витков. Используя функцию микроподачи (если она есть), можно замерить шаг измерительными губками штангенциркуля. Для этого они размещаются на одинаковых склонах.

    Как правильно хранить инструмент

    Штангенциркуль считается высокоточным метрическим инструментом, поэтому обращаться с ним нужно бережно. Хранить его необходимо в пластиковом или деревянном футляре. Допускается и мягкий чехол, но следует избегать случайных деформаций. Держать прибор нужно в сухом месте, где исключены случайные падения тяжелых предметов, а также загрязнение пылью, грязью, опилками прочим мусором. При соблюдении этих условий инструмент будет вам исправно служить многие годы.

    Статьи по теме: