Большая энциклопедия нефти и газа. Подробнее об исходных данных для расчета. Различие в добавлении расчетного запаса

Купленов Н.И. к.т.н., Мотовицкий С.В. аспирант
Тульский государственный университет

Благодаря своим достоинствам разборные пластинчатые водонагреватели (ПВН) активно вытесняют из отечественных систем теплоснабжения традиционные трубчатые теплообменники. Обеспечивая в несколько раз более высокий начальный коэффициент теплопередачи по сравнению с трубчатыми, эти теплообменники, однако гораздо «чувствительнее» к влиянию отложений накипи, термическое сопротивление которой более резко уменьшает теплопередачу .

При высоком содержании накипеобразующих солей и продуктов коррозии в воде, характерном для большинства регионов РФ, расчетный режим работы ПВН быстро нарушается, уменьшение коэффициента теплопередачи компенсируется повышением температуры греющего теплоносителя или его расхода. На практике это не всегда возможно, поэтому в подавляющем большинстве случаев необходима промывка.

Для компенсации постепенного уменьшения коэффициента теплопередачи необходим запас поверхности теплообмена ∆F.

Отечественная практика заказов ПВН по опросным листам заимствована из зарубежной без учета собственного опыта т.е. запас теплообменной поверхности или отсутствует или составляет 2-10% от расчетной чистой поверхности F 0 .

Из опыта эксплуатации скоростных водонагревателей известно, что вследствие низкого качества противонакипной обработки водопроводной воды коэффициент теплопередачи уменьшается достаточно быстро. Так, по данным при среднем качестве воды в ЦТП г. Москвы за 4 месяца эксплуатации он уменьшился на 45-50%. Из этого следует, что при неизменных начальных температурах теплоносителей требуемая температура нагрева воды может быть обеспечена лишь при 100% - ном запасе по сравнению с расчетной величиной теплообменной поверхности.

Недостаточная величина запаса ∆F обусловит короткий межпромывочный период и необходимость частой промывки водонагревателя; завышенная величина ∆F уменьшит количество промывок, но одновременно возрастут первоначальные затраты на ПВН.

Известно, что стоимость пластинчатых водонагревателей составляет основную долю затрат на оборудование теплового пункта, в то же время и затраты на химическую промывку, как показывает опыт , тоже значительны. Поэтому экономически оправдано определение поверхности теплообмена с учетом фактической интенсивности накипеобразования и необходимости ее регулярной промывки.

Основа методики такого определения заключается в обеспечении минимума годовых затрат на амортизацию запаса поверхности теплообмена ∆F и затрат на регулярную промывку водонагревателя; это условие выполняется равенством затрат

где - коэффициент амортизации ПВН, %/100; , - стоимость 1м 2 теплообменной поверхности и затрат на промывку, руб./м 2 ; - расчетная поверхность теплообмена при отсутствии накипи, м 2 ; , - продолжительность межпромывочного периода и годовой эксплуатации ПВН, сут.

При заданных начальных температурах и расходах теплоносителей, требуемый коэффициент эффективности нагрева воды при уменьшении коэффициента теплопередачи от образующейся накипи будет обеспечиваться выполнением условия

(2)

где , - коэффициенты теплопередачи при отсутствии накипи и при ее появлении.

Термическое сопротивление теплопередаче

(3)

где , - термическое сопротивление теплопередачи при чистой поверхности и термическое сопротивление слоя накипи.

После подстановки (3) в уравнение (2) получим

(5)

Подстановкой (5) в уравнение (1а) получим

Интенсивность накипеобразования определяется качеством воды, температурным и гидравлическим режимами работы ПВН. В конце межпромывочного периода сопротивление слоя накипи толщиной в соответствии с принятой математической моделью может быть рассчитано по уравнению:

где , - скорости образования и смыва накипи; - коэффициент теплопроводности накипи.

По литературным данным и выполненным исследованиям

где , - экспериментальные константы, - концентрация накипеобразующих солей в воде, кг/м 3 ; - касательное напряжение на поверхности накипи, Па; - температура воды, ˚С.

Термическое сопротивление удобно выразить в виде

где - соотношение скоростей нагреваемого «холодного» и греющего теплоносителей; - скорость холодного теплоносителя; - комплекс величин, характеризующих теплофизические характеристики теплоносителя и конструктивные особенности пластины ПВН; - термическое сопротивление стенки пластины.

Уравнение (6) после подстановки в него (7) и (10) в своей правой и левой части содержит одну неизвестную величину - продолжительность межпромывочного периода - и позволяет при заданных исходных данных определить ее целесообразное значение.

Основными экономическими факторами, определяющими величину , является стоимость 1м 2 теплообменной поверхности , и затраты на промывку , руб./м 2 .

На рис.1 приведены результаты расчетов экономически целесообразной продолжительности межпромывочного периода при скорости нагреваемого теплоносителя ω х = 0,4 м/с в зависимости от определяющих величин.

Рис.1 Зависимость экономически целесообразных относительной величины запаса теплообменной поверхности ∆F/F 0 и продолжительности межпромывочного периода τ мпр пластинчатого водонагревателя для горячего водоснабжения

Примечание:

1)Расчет производился при ω х = 0,4 м/с для пластин типа М10-BFG.

2)Исходные данные:

С=0,00357 кг/м 3 ; а м =0,19; λ н =1,05 Вт/(м·˚С); =12,7·10 -10 ; А=13374.

С повышением удельной стоимости промывки теплообменной поверхности экономически целесообразный межпромывочный период увеличивается, и приведенные зависимости позволяют получить количественную оценку продолжительности этого периода.

С другой стороны, при высокой стоимости теплообменника, что имеет место при уменьшении площади единичной пластины, величина экономически целесообразного запаса теплообменной поверхности уменьшается, конкретные величины определяющих факторов и зависимых от них величин приведены на графиках. Из этих данных следует, в частности, что для обеспечения требуемого температурного режима горячего водоснабжения даже при умеренной жесткости водопроводной воды и ежемесячной промывке запас теплообменной поверхности должен быть не менее 60% по сравнению с ее величиной при безнакипном режиме работы.

Заметим, что сопутствующее образованию накипи возрастание гидравлического сопротивления ПВН при экономически целесообразных продолжительностях межпромывочного периода несущественно, поскольку в среднем проходное сечение межпластинчатых каналов уменьшается на 4-8%.

Литература

1. Жаднов О.В. "Пластинчатые теплообменники - дело тонкое"// "Новости теплоснабжения" -2005.,-N 3.-c.39-53.

2. Чернышев Д.В. "Прогнозирование накипеобразования в пластинчатых водонагревателях для повышения надежности их работы" Дисс. к.т.н.05.23.03.- Тула, 2002. - 199с.

3. Бажан П.И., Каневец Г.Е., Селиверстов В.М. Справочник по теплообменным аппаратам. -М.: Машиностроение, 1989.

4. Чистяков Н.Н. и др. Повышение эффективности работы систем горячего водоснабжения. М., Стройиздат, 1988.

Общие принципы устройства схем теплоснабжения

Система теплоснабжения представляет собой систему транспортировки тепловой энергии (в виде нагретой воды или пара) от источника тепловой энергии к ее потребителю.

Система теплоснабжения в основном состоит из трех частей: источник тепла, потребитель тепла, тепловая сеть - служащая для транспортировки тепла от источника к потребителю.

  1. Паровой котел на ТЭЦ или котельной.
  2. Сетевой теплообменник.
  3. Циркуляционный насос.
  4. Теплообменник системы горячего водоснабжения.
  5. Теплообменник системы отопления.

Роль элементов схемы:

  • котельный агрегат - источник тепла, передача теплоты сгорания топлива к теплоносителю;
  • насосное оборудование - создание циркуляции теплоносителя;
  • подающий трубопровод - подача нагретого теплоносителя от источника к потребителю;
  • обратный трубопровод - возврат охлажденного теплоносителя на источник от потребителя;
  • теплообменное оборудование - преобразование тепловой энергии.

Температурные графики

В нашей стране принято качественное регулирование отпуска теплоты потребителям. Т. е. не изменяя расход теплоносителя через теплопотребляющую систему, изменяется разность температур на входе и на выходе системы.

Это достигается изменением температуры в подающем трубопроводе в зависимости от температуры наружного воздуха. Чем ниже температура наружного воздуха, тем выше температура в подающем трубопроводе. Соответственно температура обратного трубопровода также изменяется по этой зависимости. И все системы потребляющие тепло проектируются с учетом этих требований.

Графики зависимости температур теплоносителя в подающем и обратном трубопроводе называются температурным графиком системы теплоснабжения.

Температурный график устанавливается источником теплоснабжения в зависимости от его мощности, требований тепловых сетей, требований потребителей. Температурные графики называются по максимальным температурам в подающем и обратном трубопроводах: 150/70, 95/70 …

Срезка графика в верхней части - когда у котельной не хватает мощности.

Срезка графика в нижней части - для обеспечения работоспособности систем ГВС.

Работа систем отопления идет в основном по графику 95/70 для обеспечения средней температуры в отопительном приборе 82,5°С при -30° С.

Если требуемую температуру в подающем трубопроводе обеспечивает источник тепла, то требуемую температуру в обратном трубопроводе обеспечивает потребитель тепла своей теплопотребляющей системой. Если происходит завышение температуры обратной воды от потребителя, то это означает неудовлетворительную работу его системы и влечет за собой штрафы т. к. приводит к ухудшению работы источника тепла. При этом снижается его КПД. Поэтому существуют специальные контролирующие организации, которые отслеживают, чтобы теплопотребляющие системы потребителей выдавали температуру обратной воды по температурному графику или ниже. Однако в некоторых случаях подобное завышение допускается, напр. при установке отопительных теплообменников.

График 150/70 позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производят понижение графика, например на 95/70. Понижение производится установкой теплообменника либо подмесом обратной воды в подающий трубопровод.

Гидравлика тепловых сетей

Циркуляция воды в системах теплоснабжения производится сетевыми насосами на котельных и тепловых пунктах. Так как протяженность трасс достаточно велика то разность давления в подающем и обратном трубопроводах, которую создает насос, уменьшается с удалением от насоса.

Из рисунка видно, что для наиболее удаленного потребителя самый малый располагаемый перепад давления. Т. е. для нормальной работы его теплопотребляющих систем необходимо чтобы они имели самое малое гидравлическое сопротивление для обеспечения требуемого расхода воды через них.

Расчет пластинчатых теплообменников для систем отопления

Приготовление отопительной воды может происходить путем нагрева в теплообменнике.

При расчете пластинчатого теплообменника для получения отопительной воды , исходные данные берутся для самого холодного периода, т. е. когда необходимы самые высокие температуры и соответственно самое большое теплопотребление. Это наихудший режим для теплообменника, рассчитанного на отопление.

Особенностью расчета теплообменника для системы отопления является завышенная температура обратной воды по греющей стороне. Это допускается специально т. к. любой поверхностный теплообменник принципиально не может охладить обратную воду до температуры графика, если по нагреваемой стороне на вход в теплообменник поступает вода с температурой графика. Обычно допускается разница 5-15°С.

Расчет пластинчатых теплообменников для систем ГВС

При расчете пластинчатых теплообменников для систем горячего водоснабжения исходные данные берутся для переходного периода, т. е. когда температура подающего теплоносителя низка (обычно 70°С), холодная вода имеет самую низкую температуру (2-5°С) и при этом еще работает система отопления - это май-сентябрь месяцы. Это наихудший режим для теплообменника ГВС.

Расчетная нагрузка для систем ГВС определяется исходя из наличия на объекте, где устанавливаются теплообменники аккумуляторных баков.

При отсутствии баков расчет пластинчатых теплообменников производится на максимальную нагрузку. Т. е. теплообменники должны обеспечивать нагрев воды и при максимальном водоразборе.

При наличии аккумуляторных баков пластинчатые теплообменники рассчитываются на среднечасовую нагрузку. Аккумуляторные баки пополняются постоянно и компенсируют пиковый водоразбор. Теплообменники должны обеспечивать только подпитку баков.

Соотношение максимальной и среднечасовой нагрузок достигает в некоторых случаях 4-5 раз.

Обращаем Ваше внимание, что расчет пластинчатых теплообменников удобно производить в собственной

Теплообменный аппарат - это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации - проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Имеет следующий вид:

Q = F‧k‧Δt, где:

  • Q - размер теплового потока, Вт;
  • F - площадь рабочей поверхности, м2;
  • k - коэффициент передачи тепла;
  • Δt - разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором .

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

Q = G 1 c p 1 (t 1 вх -t 1 вых) = G 2 c p 2 (t 2 вых -t 2 вх), где:

  • G 1 и G 2 - расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • c p 1 и c p 2 - удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит - с другой. Эти величины (t 1 вх;t 1 вых и t 2 вх;t 2 вых) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

Исходные данные:

  • Температура греющего носителя при входе t 1 вх = 14 ºС;
  • Температура греющего носителя при выходе t 1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t 2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t 2 вых = 12 ºС;
  • Расход массы греющего носителя G 1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G 2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости с р =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим производительность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 - 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 - 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата - основные взаимосвязанные показатели качества работы теплообменной машины. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности , поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Рассчитываем коэффициент  1 со стороны греющего пара для случая конденсации на пучке n вертикальных труб высотой Н:


= 2,04
= 2,04
= 6765 Вт/(м 2 К), (10)

здесь , , , r физические параметры конденсата при температуре пленки конденсата t к, Н – высота нагревательных труб, м; t – перепад температур между греющим паром и стенками труб (принимаем в пределах 3…8 0 С).

Значения функции А t для воды при температуре конденсации пара

Температура конденсации пара t к, 0 С

О правильности расчетов судят, сопоставляя полученное значение  1 и его предельные величины, которые приведены в п. 1.

Рассчитаем коэффициент теплоотдачи α 2 от стенок труб к воде.

Для этого необходимо выбрать уравнение подобия вида

Nu = ARe m Pr n (11)

В зависимости от величины числа Re определяют режим течения жидкости и выбирают уравнение подобия.

(12)

Здесь n– число труб на 1 ход;

d вн = 0,025 - 20,002 = 0,021 м – внутренний диаметр трубы;

При Re > 10 4 имеем устойчивый турбулентный режим движения воды. Тогда:

Nu = 0,023  Re 0,8  Pr 0,43 (13)

Число Прандтля характеризует соотношение физических параметров теплоносителя:

=
= 3,28. (14)

, , , с – плотность, динамическая вязкость, теплопроводность и теплоемкость воды при t ср.

Nu = 0,023 26581 0,8  3,28 0,43 = 132,8

Число Нуссельта характеризует теплоотдачу и связано с коэффициентом  2 выражением:

Nu =
,  2 = =
= 4130 Вт/(м 2 К) (15)

С учетом значений  1 ,  2 , толщины стенки трубы  = 0,002 м и ее теплопроводности  ст, определяем коэффициент К по формуле (2):

=
= 2309 Вт/(м 2 К)

Сопоставляем полученное значение К с пределами для коэффициента теплопередачи, которые были указаны в п 1.

Определяем площадь поверхности теплообмена из основного уравнения теплопередачи по формуле (3):

=
= 29 м 2 .

Вновь по таблице 4 выбираем стандартный теплообменник:

площадь поверхности теплообмена F = 31 м 2 ,

диаметр кожуха D = 400 мм,

диаметр труб d = 25×2 мм,

число ходов z = 2,

общее число труб N = 100,

длина (высота) труб H = 4 м.

Запас площади

(запас площади должен быть в пределах 5…25%).

4. Механический расчет теплообменника

При расчете на внутреннее давление толщина стенки корпуса  к проверяется по формуле:

 к =
+ С, (16)

где р – давление пара 4·0,098 = 0,39 Н/мм 2 ;

D н – наружный диаметр кожуха, мм;

 = 0,9 коэффициент прочности сварного шва;

 доп = 87…93 Н/мм 2 – допускаемое напряжение для стали;

С = 2…8 мм – прибавка на коррозию.

 к =
+ 5 = 6 мм.

Принимаем нормализованную толщину стенки 8 мм.

Трубные решетки изготавливаются из листовой стали. Толщина стальных трубных решеток берется в пределах 15…35 мм. Она выбирается в зависимости от диаметра развальцованных труб d н и шага труб .

Расстояние между осями труб (шаг труб) τ выбирают в зависимости от наружного диаметра труб d н:

τ = (1,2…1,4)·d н, но не менее чем τ = d н + 6 мм.

Нормализованный шаг для труб d н = 25 мм равен τ = 32 мм.

 р =
.

При заданном шаге 32 мм толщина решетки должна быть не менее

 р =
= 17,1 мм.

Окончательно принимаем  р = 25 мм.

При расчете фланцевых соединений задаются размером стягивающего болта. Принимаем во фланцевом соединении для аппаратов с диаметром D в = 400…2000 мм стальной болт М16.

Определим допустимую нагрузку на 1 болт при затяжке:

q б = (d 1 – c 1) 2 , (17)

где d 1 = 14 мм – внутренний диаметр резьбы болта;

с 1 = 2 мм – конструктивная прибавка для болтов из углеродистой стали;

 = 90 Н/мм 2 – допустимое напряжение на растяжение.

q б = (14 – 2) 2  90 = 10174 Н.

Статьи по теме: