Становление и развитие классической электродинамики. Предмет классической электродинамики

ОПРЕДЕЛЕНИЕ

Электромагнитные поля и электромагнитные взаимодействия исследует раздел физики, называемый электродинамикой .

Классическая электродинамика изучает и описывает свойства электромагнитных полей. Рассматривает законы, по которым электромагнитные поля взаимодействуют с телами, обладающими электрическим зарядом.

Базовые понятия электродинамики

Основой электродинамики неподвижной среды являются уравнения Максвелла. Электродинамика оперирует такими основными понятиями как электромагнитное поле, электрический заряд, электромагнитный потенциал, вектор Пойнтинга.

Электромагнитным полем называют особый вид материи, который проявляется при воздействии одного заряженного тела на другое. Часто при рассмотрении электромагнитного поля выделяют его составляющие: электрическое поле и магнитное поле. Электрическое поле создает электрический заряд или переменное магнитное поле. Магнитное поле возникает при движении заряда (заряженного тела) и при наличии переменного во времени электрического поля.

Электромагнитный потенциал - это физическая величина, определяющая распределение электромагнитного поля в пространстве.

Электродинамику разделяют на: электростатику; магнитостатику; электродинамику сплошной среды; релятивистскую электродинамику.

Вектор Пойнтинга (вектор Умова — Пойнтинга) - это физическая величина, являющаяся вектором плотности потока энергии электромагнитного поля. Величина данного вектора равна энергии, которая переносится в единицу времени сквозь единичную площадь поверхности, которая перпендикулярна направлению распространения электромагнитной энергии.

Электродинамика составляет основу для изучения и развития оптики (как раздела науки), физики радиоволн. Этот раздел науки является фундаментом для радиотехники и электротехники.

Классическая электродинамика, при описании свойств электромагнитных полей и принципов их взаимодействия, использует систему уравнений Максвелла (в интегральной или дифференциальной формах), дополняя ее системой материальных уравнений, граничными и начальными условиями.

Структурные уравнения Максвелла

Система уравнений Максвелла имеет такое же значение в электродинамике как законы Ньютона в классической механике. Уравнения Максвелла были получены в результате обобщения многочисленных экспериментальных данных. Выделают структурные уравнения Максвелла, записывая их в интегральном или дифференциальном виде и материальные уравнения, которые связывают векторов c параметрами, характеризующими электрические и магнитные свойства вещества.

Структурные уравнения Максвелла в интегральном виде (в системе СИ):

где - вектор напряженности магнитного поля; — вектор плотности электрического тока; - вектор электрического смещения. Уравнение (1) отображает закон создания магнитных полей. Магнитное поле возникает при движении заряда (электрический ток) или при изменении электрического поля. Это уравнение - обобщение закона Био-Савара-Лапласа. Уравнение (1) носит название теоремы о циркуляции магнитного поля.

где - вектор индукции магнитного поля; - вектор напряжённости электрического поля; L - замкнутый контур, по которому происходит циркуляция вектора напряженности электрического поля. Другое название уравнения (2) — это закон электромагнитной индукции. Выражение (2) означает то, что вихревое электрическое поле порождается благодаря переменному магнитному полю.

где - электрический заряд; - плотность заряда. Уравнение (3) называют теоремой Остроградского — Гаусса. Электрические заряды являются источниками электрического поля, существуют свободные электрические заряды.

Уравнение (4) свидетельствует о том, что магнитное поле является вихревым. Магнитных зарядов в природе не существует.

Структурные уравнения Максвелла в дифференциальном виде (система СИ):

где - вектор напряженности электрического поля; - вектор магнитной индукции.

где — вектор напряженности магнитного поля; - вектор диэлектрического смещения; - вектор плотности тока.

где - плотность распределения электрического заряда.

Структурные уравнения Максвелла в дифференциальной форме определяют электромагнитное поле в любой точке пространства. Если заряды и токи распределены в пространстве непрерывно, то интегральная и дифференциальная формы уравнений Максвелла эквивалентны. Однако если имеются поверхности разрыва, то интегральная форма записи уравнений Максвелла является более общей.

Для достижения математической эквивалентности интегральной и дифференциальной форм уравнений Максвелла дифференциальную запись дополняют граничными условиями.

Из уравнений Максвелла следует, что переменное магнитное поле порождает переменное электрическое поле и наоборот, то есть эти поля неразрывны и образуют единое электромагнитное поле. Источниками электрического поля могут быть либо электрические заряды, либо переменное во времени магнитное поле. Магнитные поля возбуждаются движущимися электрическими зарядами (токами) или переменными электрическими полями. Уравнения Максвелла не являются симметричными относительно электрического и магнитного полей. Это происходит из-за того, что электрические заряды существуют, а магнитных нет.

Материальные уравнения

Систему структурных уравнений Максвелла дополняют материальными уравнениями, которые отражают связь векторов c параметрами, характеризующими электрические и магнитные свойства вещества.

где - относительная диэлектрическая проницаемость, - относительная магнитная проницаемость, — удельная электропроводность, - электрическая постоянная, - магнитная постоянная. Среда в таком случае считается изотропной, неферромагнитной, несегнетоэлектрической.

Примеры решения задач

ПРИМЕР 1

Задание Получите дифференциальную форму уравнения непрерывности из системы уравнений Максвелла.
Решение В качестве основы для решения задачи используем уравнение:

где - площадь произвольной поверхности, на которую опирается замкнутый контур L. Из (1.1) имеем:

Рассмотрим бесконечно малый контур, тогда

Так как поверхность является замкнутой, то выражение (1.2) можно переписать как:

Запишем еще одно уравнение Максвелла:

Продифференцируем уравнение (1.5) по времени, имеем:

Принимая во внимание выражение (1.4), уравнение (1.5) представим в виде:

Мы получили уравнение (1.5) непрерывности в интегральной форме. Для того, чтобы перейти к дифференциальной форме уравнения непрерывности перейдем к пределу:

Мы получили уравнение непрерывности в дифференциальной форме:

История развития классической электродинамики является поучительным примером того, как математизация естественно научной дисциплины и переход к изящному (хотя и достаточно сложному) языку описания повлекли за собой качественный скачок в понимании целого ряда явлений природы, часть из которых была первоначально предсказана теоретически (“на кончике пера”), а потом получила блестящее экспериментальное подтверждение. В настоящей теме будет содержаться достаточно большое количество математических формул, приводимых лишь с целью иллюстрации красоты и компактности языка математики.

Непрерывные распределения зарядов. Входящие в выражения для электростатических и магнитостатических полей (9_4) и (9_8) суммы в случае макроскопических заряженных тел содержат очень большое число слагаемых, соответствующих вкладам в поля от точечных зарядов. Их вычисление неудобно с чисто “технической” точки зрения: математическая операция суммирования более трудоемка, чем, например, интегрирование (сказанное относится к аналитическим расчетам, при компьютерном счете суммирование предпочтительнее взятия интегралов, однако в 19 веке подобной альтернативы в математике не существовало). Переход к интегрированию требовал приближенной замены дискретного распределения элементарных зарядов на непрерывное , характеризуемое плотностью электрического заряда (отношение величины заряда к объему содержащего его небольшого, но макроскопического элемента пространства):

Естественно, что замена (1) приводила к “сглаживанию” рассчитываемых макроскопических полей по сравнению с реальными микроскопическими, сильно изменяющимися на сравнимых с размером атома расстояниях. Описанный переход к непрерывному распределение зарядов существенно упрощал расчеты, не снижая их практическую ценность (наука и техника 19 века еще не доросли до эффектов, происходящих на микроскопическом уровне организации материи).

Математический формализм. Переход к непрерывным распределениям зарядов и токов позволил переписать законы электро и магнитостатики сразу в нескольких математических формах, эквивалентных по физическому смыслу, но существенно различающихся по технике выполнения конкретных расчетов:

интегральные формулировки:


дифференциальные формулировки:

(3)
;

расчет полей через скалярный и векторный
потенциалы :


Т.о. адекватное описание одних и тех же законов естествознания возможно на различных языках математики .

Операторы . В начале 20 века в математике были введены новые объекты - операторы , без использования которых современная физика была бы немыслима. Понятие оператора является естественным обобщением традиционного для классической математики понятия функции. Если под функцией понимается закон (правило, отображение), по которому одному числу (набору чисел) ставится в соответствие другое число (набор чисел), то под оператором подразумевают закон, по которому одному объекту (группе объектов) ставится в соответствие другой объект (группа). Наиболее часто встречаются операторы, действующие на функции (операторы умножения на число, дифференцирования, интегрирования и т.д.) или векторы (оператор поворота, проектирования и т.д.). Весьма полезной оказалась идея определения математических операций над операторами. Например, под произведением двух операторов подразумевается оператор, выполняющий последовательно действия каждого из перемножаемых операторов. Для операции умножения операторов в общем случае не выполняется свойство коммутативности:

(5)
.

Использование языка операторов существенно сокращает запись многих математических формул и делает их более “элегантными”. Так введение лишь одного дифференциального оператора “набла”


при помощи стандартным образом определенных операций скалярного (,) и векторного [ , ] умножения позволяет записать системы уравнений (3) и (4) в весьма компактной форме:

(3’)
;

(4’)
,
.

В последних равенствах использован оператор Лапласа:

(7)
.

Помимо краткости записи преимущество операторного метода состоит в том, что. с самим оператором набла можно обращаться почти так же, как с обычным вектором, что, несомненно, облегчает громоздкие выкладки.

Закон электромагнитной индукции Фарадея. Долгое время электрические и магнитные явления считались независимыми, хотя даже на уровне магнитостатики это не совсем верно: магнитостатическое поле порождается постоянными токами, существование которых в веществе невозможно без наличия электрического поля. Фарадей экспериментальным путем установил, что изменяющееся во времени магнитное поле может порождать электрическое . Это электрическое поле в отличие от порождаемого зарядами потенциального электростатического является вихревым, т.е. его линии представляют собой замкнутые кривые (рис. 11_1). Открытый Фарадеем закон индукции впоследствии имел колоссальное практическое значение, поскольку открыл весьма удобный и дешевый способ преобразования механической энергии движения источников магнитного поля в электрическую, ныне лежащий в основе промышленного производства электроэнергии.

С точки зрения математической записи уравнений для поля открытое Фарадеем явление требует видоизменения системы уравнений (6):

(10)
.

Гипотеза Максвелла. Рассмотрев совместно систему уравнений (7) и (10) Максвелл обратил внимание на следующие ее недостатки:

1. Указанная система несовместна с законом сохранения заряда.

2. Система оказалась весьма несимметричной даже для случая описания электромагнитного поля в пустом пространстве (=0 и j=0 ).

Несоответствие уравнений закону сохранения заряда было достаточным аргументом для того, чтобы усомниться в их истинности, поскольку законы сохранения носят весьма общий характер. Оказалось, что существует множество способов видоизменения системы уравнений (7), (10), приводящих их в соответствие с законом сохранения. Максвеллом был выбран простейший из возможных путь, приводящий систему к симметричному виду в случае ее использования для описания полей в пустом пространстве. В последнее уравнение было добавлено слагаемое, описывающее возможность генерации вихревого магнитного поля изменяющимся электрическим (“ток смещения”):

(11)

.

Чисто математическими следствиями из видоизмененной системы уравнений Максвелла были утверждение о сохранении энергии в электромагнитных процессах и теоретический вывод о возможности независимого от зарядов и токов существования поля в виде электромагнитных волн в пустом пространстве. Это последнее предсказание нашло блестящее экспериментальное подтверждение в знаменитых опытах Герца и Попова, положивших основу современной радиосвязи. Рассчитываемая из системы (11) скорость распространения электромагнитных волн оказалась равной экспериментально измеренной скорости распространения света в вакууме, что означало объединение практически ранее независимых разделов физики электромагнетизма и оптики в одну законченную теорию.

Проблема существования магнитного монополя. Колоссальный успех теории Максвелла продемонстрировал возможность теоретического поиска новых законов природы на основе анализа математических уравнений, описывающих ранее известные закономерности, с обязательной экспериментальной проверкой таким образом “угадываемых” результатов.

Симметричная для описания электромагнитных полей в пустом пространстве система уравнений Максвелла (11) существенно “теряет свою красоту” при учете электрических зарядов и токов: создаваемое электрическими зарядами потенциальное поле Е не имеет аналога в магнитных взаимодействиях. Эта ассиметрия послужила поводом для постановки множества экспериментов по поиску магнитных монополей (или магнитных зарядов) - гипотетических частиц, являющихся источником потенциального магнитного поля и теоретических исследований их предполагаемых свойств. До настоящего времени надежных экспериментальных данных о существовании магнитных монополей не получено.

Противоречия между электродинамикой и классической физикой. Сформулированные в виде законченной теории и выдержавшие экспериментальную проверку законы электромагнетизма Максвелла оказались в противоречии с принципами, лежащими в основе классического миропонимания Галлилея - Ньютона:

1. Удовлетворяющие принципу относительности Галилея классические силы могут зависеть от времени, расстояний между телами и их относительных скоростей, т.е. величин, не изменяющихся при переходе из одной инерциальной системы отсчета в другую. Магнитостатические поля и связанные с ними силы Лоренца являются функциями скоростей зарядов по отношению к наблюдателю и различны в разных инерциальных системах отсчета. Т.о. явления природы, обусловленные электромагнитными взаимодействиями, с точки зрения классической физики в различных инерциальных системах отсчета должны протекать по-разному.

2. Получаемая в результате решения уравнений Максвелла скорость распространения электромагнитных волн в пустом пространстве оказалась независящей от скоростей движения как источника этих волн, так и наблюдателя. Этот вывод полностью противоречило классическому закону сложения скоростей.

Все попытки видоизменить уравнения электромагнетизма так, чтобы привести их в согласие с принципами классического естествознания приводили к теоретическому предсказанию эффектов, ненаблюдаемых на эксперименте, и были признаны несостоятельными.

Преобразования Лоренца. Поскольку уравнения Максвелла не были инвариантными относительно преобразований Галилея, т.е. вопреки требованиям принципа относительности изменяли свою форму при переходе из одной инерциальной системы отсчета в другую, по правилам, задаваемым соотношениями:

(12) ,

Лоренцем был поставлен естественный вопрос об отыскании таких преобразований координат и времени, которые не изменяли бы уравнений Максвелла и были при этом максимально простыми. Эта задача была им решена как чисто математическая:

(13) .

Сравнивая преобразования Галилея (12) и Лоренца (13), легко заметить, что последние переходят в классические в случае скоростей, малых по сравнению со скоростью света с . Т.о. предложенные Лоренцем соотношения удовлетворяли принципу соответствия , согласно которому новая теория должна согласовываться со старой о областях, где последняя была надежно проверена на экспериментах. Кроме того, следующий из преобразований Лоренца релятивистский закон сложения скоростей оставлял скорость света инвариантной относительно переходя в любую инерциальную систему отсчета, движущуюся со скоростью, меньшей с .

Опыты Майкельсона. Следующее из уравнений Максвелла утверждение о постоянстве скорости света при переходах в другие системы отсчета полностью противоречило классическим представлениям. Вставал естественный вопрос о его экспериментальной проверке. Весьма изящный эксперимент был осуществлен Майкельсоном с помощью специально сконструированного им прибора - интерферомета , позволяющего сравнивать времена распространения световых сигналов вдоль двух взаимно перпендикулярных отрезков прямых, ограниченных на концах зеркалами (рис. 11_2). Идея опыта состояла в попытке зарегистрировать различие скоростей распространения света вдоль разных плеч интерферометра, вызванное орбитальным движением Земли. Опыты с интерферометром Майкельсона дали отрицательные результаты: скорость света с высокой точностью оказалась независящей от соотношения направлений его распространения и движения Земли .

Многочисленные попытки спасти классический закон сложения скоростей путем введения гипотетической среды - эфира , в которой распространяются световые колебания потерпели полную неудачу свойства предполагаемой Среды оказывались весьма экзотическими, никаких экспериментальных подтверждений ее реального существования получено не было.

Выход из возникшей на рубеже веков в естествознании тупиковой ситуации был предложен А. Эйнштейном, создавшим специальную теорию относительности (СТО), в которой на основе двух хорошо проверенных на эксперименте постулатов (утверждений) строится внутренне непротиворечивая (хотя и весьма странная с точки зрения классического естествознания и житейского опыта) концепция, объясняющая преобразования Лоренца и предсказывающая ряд новых явлений, реально зарегистрированных в природе.

Электричество и магнетизм Н.Ф. Шемяков

Заряд и ток несут поля, зовут их электромагнитными не зря,

Дают они тепло и свет, чтоб жил в комфорте человек…

4. Электричество и магнетизм введение

1. Предмет классической электродинамики

Раздел физики, в котором исследуются свойства электромагнитного поля и взаимодействующих с ним других видов материи, называют классической электродинамикой .

Электромагнитное поле представляет собой самостоятельный вид материи. По историческим причинам термин «поле» в физике имеет два разных смысла. Вопервых, полем называют особый вид материи. Вовторых, среди физических величин функциями координат считаются такие, которые называют полями, например, поле скоростей. Словосочетание «электромагнитное поле» характеризует его особый вид материи. Электрическое поле, как и всякий физический объект, характеризуется состоянием и уравнениями движения. В каждый момент времени состояние электромагнитного поля описывается двумя полями: электрическим и магнитным. Уравнения движения для электромагнитного поля содержатся в микроскопических уравнениях Максвелла . Микроскопические уравнения Максвелла совместно с уравнениями Лоренца для заряженных частиц образуют фундаментальную систему уравнений классической электродинамики. Наряду с микроскопическими, используются макроскопические уравнения Максвелла , макроскопические уравнения Лоренца и материальные уравнения (например, закон Ома ), которые образуют макроскопическую систему уравнений.

2. Понятие близкодействия

Для описания взаимодействия тел используется понятие силового поля. Так как взаимодействие заряженных частиц передается с конечной скоростью посредством близкодействия, то посредником является электромагнитное поле. Гипотезу о близкодействующем характере электромагнитных взаимодействий предложил Фарадей в середине 19 столетия. Позднее Максвелл написал свои знаменитые уравнения электродинамики, содержащие математическую трактовку идеи близкодействия и позволившие сделать предсказание об электромагнитной природе света. Герц экспериментально установил генерацию и распространение электромагнитных волн в соответствии с уравнениями Максвелла , что окончательно подтвердило идею близкодействия.

4.1. Электростатика

1.1. Квантование заряда.

Электрические силы относятся к одному из фундаментальных взаимодействий  электромагнитному взаимодействию, которое зависит от величины электрических зарядов. Существование электромагнитных сил обнаружено давно. Их действие было известно древним грекам.

Электрический заряд имеют многие элементарные частицы, например, электрон, протон, ионы или заряженные макротела и т. д.

Электрический заряд частицы является одной из ее характеристик.

Элементарная частица может существовать без заряда, например, нейтрон, фотон и др., но не существует заряда без частицы.

Например, заряд электрона и протона равен по абсолютной величине элементарному заряду:

е=1,6 10  19 Кл.

    Электрический заряд квантуется, т.е. может принимать величину заряда, кратную элементарному заряду. Любой макроскопический заряд можно представить в виде выражения:

или Q = nе,

где n  число заряженных частиц.

2. Существуют положительный и отрицательный электрические заряды. Например, электрон  отрицательно заряженная частица, протон  положительно заряженная частица.

3. Электрический заряд  инвариантен, т. е. его величина не зависит от системы отсчета, т. е. не зависит от того, движется он или покоится.

4. Закон сохранения заряда открыт Фарадеем

В любой электрически изолированной системе алгебраическая сумма зарядов есть величина постоянная , т. е.

. (1.1)

Фундаментальные свойства заряда имеют важнейшее значение в современной физике и в естествознании вообще.

Замечание:

Открыты элементарные частицы  кварки, которые имеют дробный заряд, кратный ,. В свободном состоянии кварки не существуют.

Конспект лекций

Утверждено Редакционно-издательским советом университета в качестве конспекта лекций


Рецензенты:

Доктор физико-математических наук, зав. кафедрой Т и ЭФ КГТУ, профессор А.А. Родионов

Кандидат физико-математических наук, зав. кафедрой
общей физики КГУ Ю.А. Неручев

Кандидат технических наук, зав. кафедрой физики КСХА
Д.И. Якиревич

Полунин В.М., Сычев Г.Т.

Физика. Электростатика. Постоянный электрический ток:Конспект лекций /Курск. гос. техн. ун-т. Курск, 2003. 196 с.

Конспект лекций составлен в соответствии с требованиями Государственного образовательного стандарта-2000, Примерной программы дисциплины «Физика» (2000 г.) и рабочей программы по физике для студентов инженерно-технических специальностей КГТУ (2000 г.).

Изложение материала в данной работе предусматривает знание студентами физики и математики в объеме школьной программы, большое внимание уделено трудным для понимания вопросам, что облегчает студентам процесс подготовки к экзамену.

Конспект лекций по электростатике и постоянному электрическому току предназначен для студентов инженерно-технических специальностей всех форм обучения.

Ил. 96. Библиогр.: 11 назв.

Ó Курский государственный
технический университет, 2003

Ó Полунин В.М., Сычев Г.Т., 2003

Введение.. 7

Лекция 1. Электростатика в вакууме и веществе. Электрическое поле 12

1.1. Предмет классической электродинамики.. 12

1.2. Электрический заряд и его дискретность. Теория близкодействия. 13

1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей.. 16

1.4. Поток вектора напряженности электростатического поля. 22

1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме. 24

1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля. 25

1.7. Энергия электрического заряда в электрическом поле. 26

1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом.. 28

1.9. Эквипотенциальные поверхности.. 30

1.10. Основные уравнения электростатики в вакууме. 32

1.11. Некоторые примеры электрических полей, порождаемых простейшими системами электрических зарядов. 33

Лекция 2. Проводники в электрическом поле.. 42

2.1. Проводники и их классификация. 42

2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности.. 43

2.3. Электроемкость уединенного проводника и ее физический смысл. 46

2.4. Конденсаторы и их емкость. 47

2.5. Соединения конденсаторов. 51

2.6. Классификация конденсаторов. 54

Лекция 3. Статическое электрическое поле в веществе.. 55

3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях. 55

3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность) 58

3.3. Поле в диэлектриках. Электрическое смещение. Диэлектрическая восприимчивость вещества. Относительная диэлектрическая проницаемость среды. Теорема Остроградского-Гаусса для потока вектора индукции электрического поля. 61

3.4. Условия на границе раздела двух диэлектриков. 63

3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект. 65

3.6. Основные уравнения электростатики диэлектриков. 72

Лекция 4. Энергия электрического поля.. 75

4.1. Энергия взаимодействия электрических зарядов. 75

4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора. 77

4.3. Энергия электрического поля. Объемная плотность энергии электрического поля 81

4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле. 82

Лекция 5. Постоянный электрический ток.. 84

5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока. 84

5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы.. 85

5.3. Электродвижущая сила (ЭДС), напряжение и разность потенциалов. Их физический смысл. Связь между ЭДС, напряжением и разностью потенциалов. 90

Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока.. 92

6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной
и интегральной формах. 92

6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость. 98

6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам.. 104

6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей 108

6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах. 110

6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (КПД) источника постоянного тока. 112

Лекция 7. Электрический ток в вакууме, газах и жидкостях.. 115

7.1. Электрический ток в вакууме. Термоэлектронная эмиссия. 115

7.2. Вторичная и автоэлектронная эмиссия. 122

7.3. Электрический ток в газе. Процессы ионизации и рекомбинации.. 124

7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы 142

7.5. Электролиты. Электролиз. Законы электролиза. 149

7.6. Электрохимические потенциалы.. 151

7.7. Электрический ток через электролиты. Закон Ома для электролитов. 152

Лекция 8. Электроны в кристаллах.. 161

8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов. 161

8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака. 170

8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе. 171

8.4. Электромагнитные явления на границе раздела сред. 178

заключение.. 193

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 195

Настоящее пособие составлено по материалам, наработанным авторами в процессе чтения лекций по общей физике студентам инженерно-технических специальностей, с относительно малым объемом аудиторных занятий, на протяжении длительного промежутка времени.

Наличие у студентов инженерно-технических специальностей данного конспекта лекций позволит им и лектору более эффективно использовать лекционное время, уделить больше внимания трудным для понимания вопросам, облегчить студентам процесс подготовки к экзамену.

Особо нуждаются в таком пособии, на наш взгляд, студенты заочной, ускоренной и дистанционной форм обучения, которые, приступая к изучению физики, имеют недостаточные навыки адекватного восприятия физических понятий, определений и законов.

Изложение материала в данной работе предусматривает знание студентами физики и математики в объеме школьной программы, поэтому многие понятия в нем не раскрываются в подробностях, а используются как достаточно известные. Кроме того, в данной работе предполагается, что студенты уже изучили или изучают параллельно читаемому курсу соответствующий математический аппарат (дифференциальное и интегральное исчисление, анализ функций, дифференциальные уравнения, векторную алгебру, ряды).

Особенностью пособия является то, что материал представлен в нем в определенной, нетрадиционной последовательности, содержит необходимые рисунки и пояснения.

Несмотря на небольшой объем, предлагаемое пособие содержит изложение вопросов, знание которых необходимо для изучения дисциплин, фундаментом которых являются законы и основные положения физики.

Сокращение объема достигнуто главным образом за счет отказа от рассмотрения отдельных непринципиальных вопросов, а также за счет вынесения некоторых вопросов на их изучение в процессе практических и лабораторных занятий.

Достаточно подробно изложены такие вопросы как зонная теория металлов и полупроводников, ток в вакууме, газах и электролитах.

В основу изложения материала, за редким исключением, обусловленными методическими соображениями, положен эксперимент. Фундаментальные опыты, послужившие основой современного учения об электромагнетизме, описаны достаточно подробно.

Кроме того, уделено определенное внимание разъяснению принципов измерения основных электрических величин, которое, по возможности, следует непосредственно за введением соответствующих физических понятий. Однако описание различных опытов не претендует на полноту и, кроме того, касается лишь только принципов этих опытов, так как студенты слушают лекционный курс с демонстрациями и работают в физических лабораториях. По этой же причине большинство рисунков выполнено в виде простых схем и отражает только качественные для данного случая зависимости без указания единиц измерения и численных значений рассматриваемых величин, что способствует лучшему восприятию студентами изучаемого материала.

Так как в настоящее время имеются задачники, соответствующие университетскому курсу физики, то включение конкретных задач и упражнений по изучаемому разделу не предусмотрено. Поэтому в конспекте лекций приведены только сравнительно немногочисленные примеры, иллюстрирующие применение наиболее важных законов.

Изложение ведется в Международной системе единиц (СИ). Обозначения единиц измерения физических величин даны через основные и производные единицы системы, в соответствии с их определениями в системе СИ.

Пособие может быть использовано аспирантами и преподавателями, имеющими недостаточный опыт работы в вузе.

Авторы будут благодарны всем, кто внимательно просмотрит данное пособие и выскажет определенные замечания по существу. Кроме того, они постараются учесть все рациональные замечания со стороны коллег-физиков, аспирантов, студентов и внести соответствующие исправления и дополнения.

Введение

Настоящий конспект лекций посвящен одному из разделов общего курса физики, разделу "Электричество", который читается студентам тех специальностей и форм обучения, в учебных планах которых этот курс предусмотрен.

В нем акцентируется внимание на то, что электрическая энергия играет большую роль в технике по следующим причинам:

1. Чрезвычайная легкость, с которой электроэнергия преобразуется в другие виды энергии: механическую, тепловую, световую и химическую.

2. Возможность передачи электроэнергии на значительные расстояния.

3. Высокий КПД электромашин и электроаппаратов.

4. Чрезвычайно высокая чувствительность электроизмерительных и регистрирующих приборов и развитие электрических методов измерения различных неэлектрических величин.

5. Исключительные возможности, предоставляемые электрическими приборами и устройствами для автоматики, телемеханики и контроля производства.

6. Развитие электрических, электротермических, электрохимических, электромеханических и электромагнитных методов обработки материалов.

Учение об электричестве имеет свою историю, органически связанную с историей развития производительных сил общества и других областей естествознания. В истории учения об электричестве можно выделить три этапа:

1. Период накопления опытных фактов и установления основных понятий и законов.

2. Период формирования учения об электромагнитном поле.

3. Период формирования атомистической теории электричества.

Истоки представлений об электричестве уходят в Древнюю Грецию. Притяжение легких тел натертым янтарем и другими предметами было известно людям давно. Однако электрические силы были совершенно неясны, возможность их практического применения не чувствовалась, поэтому не было стимула к систематическим исследованиям в этой области.

Только открытия первой половины XYIII в. заставляют резко изменить отношение к электрическим явлениям. Несомненно, этому способствовало изобретение электрической машины (вторая половина XYII в.), на базе которой значительно расширились возможности экспериментирования.

К середине XYIII в. интерес к электричеству возрастает, в исследования включаются естествоиспытатели многих стран. Наблюдение сильных электрических разрядов не могло не навести на аналогию электрической искры и молнии. Электрическая природа молнии была доказана непосредственными опытами В. Франклина, М.В. Ломоносова, Г.В. Рихмана (1752 – 1753). Изобретение громоотвода было первым практическим применением учения об электричестве. Это способствовало развитию общего интереса к электричеству, привлечению в эту область новых исследователей.

Английский естествоиспытатель Р. Симмер (1759) выдвинул плодотворную гипотезу о природе электричества. Развивая идеи Дюфе, Симмер сделал заключение, что тела в обычных состояниях содержат два рода электричества в равных количествах, нейтрализующих действие друг друга. Электризация вызывает избыток в теле одного электричества над другим. Прекрасным подтверждением этой гипотезы было открытие русским академиком Ф. Эпинусом электростатической индукции (1759).

Установленный Ломоносовым закон сохранения энергии и материи был величайшим достижением в физике XYIII в. Содержание открытого Ломоносовым закона сохранения раскрывалось постепенно и сыграло большую роль в развитии учения об электричестве. Так, открытый позднее закон сохранения электрических зарядов является частным проявлением всеобщего закона сохранения материи и движения.

До середины XYIII в. эксперименты по электричеству продолжали быть чисто качественными. Первый шаг на пути к количественному эксперименту был сделан Рихманом, который предложил первый прибор для измерений, названный электрометром (1745). Важнейшим этапом в развитии экспериментальной техники было изобретение в 1784 г. Ш. Кулоном очень чувствительных крутильных весов, сыгравших важную роль в изучении сил различной природы. Этот прибор позволил Кулону установить закон взаимодействия магнитов и электрических зарядов (1785). Законы Кулона послужили основой для развития математической теории электростатики и магнитостатики.

Далее, благодаря опытам Л. Гальвани (1789) и А. Вольта (1792) были открыты контактные электрические явления, что, в свою очередь, привело к изобретению гальванических элементов и к обнаружению электрического тока (1800).

Английские исследователи А. Карлейль и В. Никольсон обнаружили, что гальванический ток, проходя через воду, разлагает ее на водород и кислород. Между физикой и химией установилась взаимообогащающая связь. Электричество приобретает громадное практическое значение, что стимулирует дальнейшее развитие этой отрасли науки.

Улучшение конструкции вольтова столба приводит к открытию новых действий электрического тока. В 1802 г. В.В. Петров с помощью мощного вольтова столба получает электрическую дугу. Дуга Петрова дала начало ряду новых применений тепловых действий тока.

Открытием действия тока на магнитную стрелку Х. Эрстед (1820) положил начало новой главе в теории электричества – учению о магнитных свойствах тока, позволившему включить магнетизм в единую теорию электромагнитных явлений.

Изучение электрического тока продолжало идти в нарастающем темпе. Было установлено, что магнитное действие тока усиливается, если проводник свертывается в спираль. Это открыло возможность конструирования электромагнитных измерителей тока.

В 1820 г. А. Ампер установил закон, по которому определялась сила взаимодействия двух элементарных токов. Опираясь на этот опытный факт, А. Ампер делает предположение об электрической природе магнетизма. Он предполагает, что "электрические токи… существуют вокруг частичек в железе, никеле и кобальте уже до намагничивания. Будучи, однако, направлены во всевозможные стороны, они не могут вызвать никакого результирующего внешнего действия, так как одни из них стремятся притянуть то, что другие отталкивают…". Так появилась в физике гипотеза молекулярных токов, глубина которой вскрылась только в XX в.

В дальнейших исследованиях по электричеству эффективным орудием стал закон, установленный в 1827 г. немецким физиком Г. Омом и получивший название закона Ома.

В этот период началась научная деятельность М. Фарадея. Особенно большое значение в истории физики имеют два открытия Фарадея: явление электромагнитной индукции (1831) и законы электролиза (1834). Фарадей этими открытиями дал теоретическую основу многим техническим применениям электричества. Исследования Э.Х. Ленца по электромагнитной индукции (правило Ленца) и установление закона для теплового действия тока (закон Джоуля-Ленца) способствовали дальнейшему практическому применению электричества.

Экспериментально было установлено, что электрические силы действую через среду, заполняющую пространство между взаимодействующими телами. Исследуя взаимодействие заряженных тел, Фарадей ввел понятие об электрических силовых линиях и дал идею о магнитных и электрических полях – пространствах, где обнаруживается действие электрических сил. Фарадей полагал, что электрические и магнитные поля представляют деформированные состояния некоторой всепроникающей невесомой среды – эфира.

Согласно Фарадею, не электрический заряд действует на окружающие тела, а связанные с зарядом силовые линии. Этим самым Фарадей выдвигал идею теории близкодействия, согласно которой действие одних тел на другие передаются через окружающую среду с определенной скоростью.

В 60-х годах XIX века Д. Максвелл обобщил учение Фарадея об электрических и магнитных полях и создал единую теорию электромагнитного поля. Основное содержания этой теории заключено в уравнениях Максвелла, которые в электромагнетизме играют такую же роль как законы Ньтона в механике.

Следует отметить большое значение работ ряда русских физиков конца XIX в. по экспериментальному подтверждению теории Максвелла. Среди такого рода исследований особо важное имели значение опыты П.Н. Лебедева по обнаружению и измерению давления света (1901).

Почти до конца XIX в. электричество представляли как невесомую жидкость. Вопрос о том, является ли электричество дискретным или сплошным, требовал анализа опытного материала и постановки новых экспериментов. Идею дискретности электричества можно усмотреть в открытых Фарадеем законах электролиза. Основываясь на этих законах, немецкий физик Г. Гельмгольц (1881) высказал предположение о существовании наименьших порций электрического заряда. С этого времени начинается развитие электронной теории, которая объяснила такие явления, как термоэлектронная эмиссия, возникновение катодных лучей. Заслуга создания электронной теории принадлежит, в основном, голландскому физику Г.А. Лоренцу, который в труде "Теория электронов" (1909) органически связал максвелловскую теорию электромагнитного поля с электрическими свойствами вещества, рассматриваемого как совокупность элементарных электрических зарядов.

На базе электронных представлений в первой четверти XX в. была развита теория диэлектриков и магнетиков. В настоящее время развивается теория полупроводников. Исследование электрических явлений привело к современной теории строения вещества. Успехи физики в этом направлении завершились открытием способов освобождения ядерной энергии, что качественным образом подняло науку и технику человечества на новую ступень развития.

Надо особо отметить, что во многих технических применениях электричества, в учении об электричестве и магнетизме первенство принадлежит русским деятелям науки и техники. Так, например, русскими учеными и инженерами были изобретены и использованы для практики гальванопластика и гальваностегия, электросварка, электрическое освещение, электродвигатели, радио. Ими разработаны многие вопросы, представляющие не только большой теоретический интерес, но и имеющие огромное практическое значение. Сюда относятся вопросы физики диэлектриков, полупроводников, магнетиков, физики газового разряда, термоэлектронной эмиссии, фотоэффекта, электромагнитных колебаний и радиоволн и т. д. В последнее время разрабатываются проблемы непосредственного преобразования солнечной энергии в электрическую энергию, создания магнитогидродинамических источников электроэнергии, "топливных элементов". Ученые России играют ведущую роль в исследованиях, направленных на решение важнейшей научно-технической проблемы современности – проблемы создания управляемых термоядерных реакций путем использования магнитных и электромагнитных полей для термоизоляции и нагревания сильно ионизованного газа – плазмы.

За большой вклад в развитии мировой науки российским ученым – физикам И.Е. Тамму, И.М. Франку и П.А. Черенкову (1958), Л.Д. Ландау (1962), Н.Г. Басову и А.М. Прохорову (1964), П.Л. Капице (1978), Ж. И. Алферову (2000 г.), В.Л. Гинзбургу и А.А. Абрикосову (2003) присуждены Нобилиевские премии.

Лекция 1. Электростатика в вакууме
и веществе. Электрическое поле

Предмет классической электродинамики. Электрический заряд и его дискретность. Теория близкодействия. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей. Электрическое поле диполя. Поток вектора напряженности электростатического поля. Теорема Остроградского-Гаусса для электрического поля в вакууме. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля. Энергия электрического заряда в электрическом поле. Потенциал и разность потенциалов электрического поля. Напряженность электрического поля как градиент его потенциала. Эквипотенциальные поверхности. Основные уравнения электростатики в вакууме. Некоторые примеры электрических полей, порождаемых простейшими системами электрических зарядов.


Предмет классической электродинамики

Классическая электродинамика – это теория, объясняющая поведение электромагнитного поля, осуществляющего электромагнитное взаимодействие между электрическими зарядами.

Законы классической макроскопической электродинамики сформулированы в уравнениях Максвелла, которые позволяют определять значения характеристик электромагнитного поля - напряженности электрического поля Е и магнитной индукции В - в вакууме и в макроскопических телах в зависимости от распределения в пространстве электрических зарядов и токов.

Взаимодействие неподвижных электрических зарядов описывается уравнениями электростатики, которые можно получить как следствие уравнений Максвелла.

Микроскопическое электромагнитное поле, создаваемое отдельными заряженными частицами, в классической электродинамике определяется уравнениями Лоренца-Максвелла, которые лежат в основе классической статистической теории электромагнитных процессов в макроскопических телах. Усреднение этих уравнений приводит к уравнениям Максвелла.

Среди всех известных видов взаимодействия электромагнитное взаимодействие занимает первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных (положительных и отрицательных) частиц, электромагнитное взаимодействие между которыми, с одной стороны, на много порядков интенсивнее гравитационного и слабого, а с другой – является дальнодействующим в отличие от сильного взаимодействия.

Электромагнитным взаимодействием определяется строение атомных оболочек, сцепление атомов в молекулы (силы химической связи) и образование конденсированного вещества (межатомное взаимодействие, межмолекулярное взаимодействие).

Законы классической электродинамики неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн, т.е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики.


1.2. Электрический заряд и его дискретность.
Теория близкодействия

Развитие физики показало, что физические и химические свойства вещества во многом определяются силами взаимодействия, обусловленными наличием и взаимодействием электрических зарядов молекул и атомов различных веществ.

Известно, что в природе существуют два вида электрических зарядов: положительные и отрицательные. Они могут существовать в виде элементарных частиц: электронов, протонов, позитронов, положительных и отрицательных ионов и др., а также "свободного электричества", но только в виде электронов. Поэтому положительно заряженное тело представляет собой совокупность электрических зарядов с недостатком электронов, а отрицательно заряженное тело – с их избытком. Заряды различных знаков компенсируют друг друга, следовательно, в незаряженных телах всегда имеются заряды обеих знаков в таких количествах, что их суммарное действие скомпенсировано.

Процесс перераспределения положительных и отрицательных зарядов незаряженных тел, или среди отдельных частей одного и того же тела, под влиянием различных факторов называется электризацией .

Так как при электризации происходит перераспределение свободных электронов, то электризуются, например, оба взаимодействующих тела, причем одно из них положительно, а другое – отрицательно. Количество же зарядов (положительных и отрицательных) при этом остается неизменным.

Отсюда следует вывод, что заряды не создаются и не исчезают, а лишь перераспределяются между взаимодействующими телами и частями одного и того же тела, в количественном отношении оставаясь неизменными.

В этом заключается смысл закона сохранения электрических зарядов, который математически можно записать так:

т.е. в электрически изолированной системе алгебраическая сумма электрических зарядов остается величиной постоянной.

Под электрически изолированной системой понимают такую систему, через границы которой не могут проникать никакие другие электрические заряды.

Надо иметь в виду, что полный электрический заряд изолированной системы является релятивистки инвариантным, т.к. наблюдатели, находящиеся в любой заданной инерциальной системе координат, измеряя заряд, получают одно и то же значение.

Ряд экспериментов, в частности законы электролиза, опыт Милликена с каплей масла, показали, что в природе электрические заряды дискретны заряду электрона. Любой заряд кратен целому числу заряда электрона.

В процессе электризации заряд изменяется дискретно (квантуется) на величину заряда электрона. Квантование заряда является универсальным законом природы.

В электростатике изучаются свойства и взаимодействия зарядов, неподвижных в той системе отсчета, в которой они находятся.

Наличие у тел электрического заряда вызывает взаимодействие их с другими заряженными телами. При этом тела, заряженные одноименно, отталкиваются, а заряженные разноименно – притягиваются.

Под взаимодействием в физике понимают всякое воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения или к изменению их положения в пространстве. Существуют различные виды взаимодействий.

В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей характеристикой взаимодействия является потенциальная энергия.

Первоначально в физике утвердилось представление о том, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия. Передача взаимодействия происходит мгновенно. Так, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. В этом состоял смысл так называемой теории взаимодействия, получившей название теория дальнодействия. Однако эти представления были оставлены как не соответствующие действительности после открытия и исследования электромагнитного поля.

Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время.

Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие частицы, т.е. взаимодействие передается через "посредника" – электромагнитное поле. Скорость распространения электромагнитного поля равна скорости распространения света в вакууме. Возникла новая теория взаимодействия теория близкодействия.

Согласно данной теории, взаимодействие между телами осуществляется посредством тех или иных полей (например, тяготение посредством гравитационного поля), непрерывно распределенных в пространстве.

После появления квантовой теории поля представление о взаимодействиях существенно изменилось.

Согласно квантовой теории, любое поле является не непрерывным, а имеет дискретную структуру.

Вследствие корпускулярно-волнового дуализма, каждому полю соответствуют определенные частицы. Заряженные частицы непрерывно испускают и поглощают фотоны, которые и образуют окружающее их электромагнитное поле. Электромагнитное взаимодействие в квантовой теории поля является результатом обмена частиц фотонами (квантами) электромагнитного поля, т.е. фотоны являются переносчиками такого взаимодействия. Аналогично другие виды взаимодействий возникают в результате обмена частиц квантами соответствующих полей.

Несмотря на многообразие воздействий тел друг на друга (зависящих от взаимодействия слагающих их элементарных частиц), в природе, по современным данным, имеется лишь четыре типа фундаментальных взаимодействий: гравитационное, слабое, электромагнитное и сильное (в порядке возрастания интенсивности взаимодействия). Интенсивности взаимодействий определяются константами связи (в частности, электрический заряд для электромагнитного взаимодействия является константой связи).

Современная квантовая теория электромагнитного взаимодействия превосходно описывает все известные электромагнитные явления.

В 60 – 70-х годах века в основном построена единая теория слабого и электромагнитного взаимодействий (так называемое электрослабое взаимодействие) лептонов и кварков.

Современной теорией сильного взаимодействия является квантовая хромодинамика.

Делаются попытки объединения электрослабого и сильного взаимодействий в так называемое "Великое объединение", а также включения их в единую схему гравитационного взаимодействия.

ЭЛЕКТРИЧЕСТВО

И ЭЛЕКТРОМАГНЕТИЗМ

Курс лекций по физике

для студентов инженерно-технических

специальностей

ЭЛЕКТРОСТАТИКА

Лекция 1. Электрическое поле в вакууме

План лекции

1.1. Предмет классической электродинамики.

1.2. Электростатика. Закон Кулона. Напряженность.

1.3. Теорема Гаусса для электростатического поля и ее применение к расчету электростатических полей.

Предмет классической электродинамики

Еще в глубокой древности были известны опыты по электризации трением (сам термин появился позднее) и особенности силового взаимодействия тел после электризации (притяжение и отталкивание). Было установлено, что существуют только два типа электрических зарядов, названных условно положительными и отрицательными, и что заряды одного знака отталкиваются, разноименные – притягиваются. К этой (в основном качественной) информации с конца восемнадцатого века начали добавляться выявленные количественные соотношения и закономерности, определяющие электрические явления.

Было установлено, что электрический заряд дискретен , то есть заряд любого тела составляет целое кратное от элементарного электрического заряда «е » (е = 1,6·10 19 Кл). Элементарные частицы: электрон и протон являются соответственно носителями элементарных отрицательного и положительного заряда. Обобщение опытных данных позволило сформулировать закон сохранения заряда : алгебраическая сумма зарядов любой замкнутой системы (не обменивающейся зарядами с внешними телами) остается неизменной. Оказалось, что электрические заряды инвариантны к преобразованиям координат, т.е. не зависят от системы отсчета. Единица электрического заряда в «СИ» – 1 Кулон (производная единица, определяемая через силу тока) – это заряд, проходящий через поперечное сечение проводника за одну секунду при силе тока в 1А.

1.2. Электростатика. Закон Кулона.
Напряженность

В 1785 году французским ученым Ш.Кулоном был установлен закон взаимодействия неподвижных точечных зарядов (размеры которых малы по сравнению с расстояниями до других зарядов): сила взаимодействия F между двумя точечными зарядами Q 1 , и Q 2 пропорциональна величинам зарядов и обратно пропорциональна квадрату расстояния между ними.



, (1.1)

здесь электрическая постоянная ; – диэлектрическая проницаемость среды – безразмерная величина, показывающая во сколько раз сила взаимодействия между зарядами в вакууме ослабляется данной средой (для примера: диэлектрическая проницаемость парафина равна 2; слюды – 6, этилового спирта – 25; дистиллированной воды – 81; воздуха – 1,0003 ≈ 1,0). Кулоновская сила направлена по прямой, соединяющей заряды, то есть является центральной и соответствует притяжению в случае разноименных зарядов и отталкиванию в случае – одноименных зарядов.

В векторной форме закон Кулона имеет вид:

(1.1а)

Если в пространство, окружающее электрический заряд, внести другой заряд, то на него будет действовать кулоновская сила, то есть в пространстве вокруг заряда существует силовое поле . В данном случае говорят об электрическом поле , посредством которого взаимодействуют электрические заряды.

Рассмотрим электрические поля, которые создаются неподвижными зарядами и которые называются электростатическими . Если в некоторую точку А поля, создаваемого зарядом Q , помещать поочередно заряды Q 1 ; Q 2 ;… Q n и определять значения кулоновской силы: , то согласно (1.1) и, это подтверждается экспериментом, отношение . Эта величина принята в качестве силовой характеристики электростатического поля и называется напряженностью

Из (1.2) следует, что при Q = 1 , то есть напряженность электростатического поля в данной точке определяется силой действующей на единичный положительный заряд, помещенный в эту точку поля. В соответствии с (1.1) и (1.2) напряженность поля точечного заряда можно находить по формуле

(1.3)

Направление вектора совпадает с направлением силы, действующей на положительный заряд. Размерность напряженности в СИ – .

В векторном виде:

Графически электростатическое поле изображают с помощью линий напряженности – линий, касательные к которым в каждой точке совпадают с направлением вектора в этой точке. Так как в каждой данной точке пространства вектор имеет только одно направление, то линии напряженности никогда не пересекаются. Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и величину напряженности электростатического поля, их проводят с определенной густотой: число линий напряженности dN пронизывающих единицу площади поверхности dS ,перпендикулярную линиям напряженности, должно быть равно числовому значению вектора . Если приписать величине размерность

Е , то (1.4)

В качестве примера на (рис.1.1 ) представлено графическое изображение (с помощью линий ) электростатических полей: положительного точечного заряда ("а "); отрицательного точечного заряда ("б "); двух точечных зарядов ("в ") и поля двух параллельных равномерно заряженных разноименными зарядами плоскостей ("г ").

Рис.1.1

Электростатическое поле также характеризуется скалярной величиной, называемой поток вектора напряженности сквозь рассматриваемые поверхности Ф Е . Элементарный поток вектора сквозь площадку dS вводится как скалярное произведение по формуле

(см.. рис.1.2 ), здесь dS – площадь элементарной площадки, – единичный вектор нормали к площадке; – угол между векторами и ; – проекция вектора Е на направление ; – условный вектор, модуль которого равен площади dS , а направление совпадает с " ".

Поток Ф E через конечную поверхность S определяется, как

(1.6)

Из выражений (1.5, 1.6) следует, что знак Ф E зависит от знака cos , который в свою очередь зависит от взаимного расположения векторов и .

Направление задается расположением электрических зарядов, а за направление для замкнутой поверхности S – направление нормали, выходящей из области, охватываемой замкнутой поверхностью S . Таким образом, поток вектора напряженности электростатического поля сквозь рассматриваемую поверхность S пропорционален числу линий вектора , пронизывающих эту поверхность.

Рис.1.2

Рассмотрим электростатическое поле, создаваемое системой неподвижных точечных зарядов Q 1 ; Q 2 ;… Q n , в некоторой точке которого находится заряд Q . Эксперимент показывает, что для кулоновских сил справедлив, действующий в механике принцип независимости действия сил – результирующая сила , действующая со стороны поля на заряд Q , равна векторной сумме сил , приложенных к нему со стороны каждого из зарядов Q i:

Согласно (1.2) , где – напряженность результирующего поля; – напряженность поля заряда Q i . Подставляя эти выражения в (1.7) получим соотношение

выражающее принцип суперпозиции (наложения) электростатических полей : напряженность поля системы неподвижных точечных зарядов в некоторой точке равна векторной сумме напряженностей полей, создаваемых в этой точке каждым из зарядов в отдельности. Принцип суперпозиции позволяет рассчитывать электростатические поля любой системы неподвижных зарядов так как, если заряды не точечные, то их всегда можно свести к совокупности точечных зарядов.

Статьи по теме: